Phenotypic Analysis Combined with Tandem Mass Tags (TMT) Labeling Reveal the Heterogeneity of Strawberry Stolon Buds

التفاصيل البيبلوغرافية
العنوان: Phenotypic Analysis Combined with Tandem Mass Tags (TMT) Labeling Reveal the Heterogeneity of Strawberry Stolon Buds
المؤلفون: Xia Jin, Guan Ling, Qian Yaming, Ejiao Wu, Mizhen Zhao, Hongmei Yu
المصدر: BMC Plant Biology
BMC Plant Biology, Vol 19, Iss 1, Pp 1-25 (2019)
بيانات النشر: Research Square Platform LLC, 2019.
سنة النشر: 2019
مصطلحات موضوعية: Proteomics, Heterogeneous nuclear ribonucleoprotein, Cinnamyl-alcohol dehydrogenase, Meristem, Plant Science, Biology, Phenotypic observation, Strawberry, Fragaria, Tandem Mass Spectrometry, Axillary bud, lcsh:Botany, Tandem mass tags, Protein Interaction Maps, Plant Proteins, Differentially expressed proteins, Stolon, Computational Biology, Plant Dormancy, Cell biology, lcsh:QK1-989, Plant Leaves, Phenotype, Stolon buds, Shoot, Dormancy, Plant Shoots, Research Article, Chromatography, Liquid
الوصف: Background Ramet propagation in strawberry (Fragaria × ananassa) is the most effective way in production. However, the lack of systematically phenotypic observations and high-throughput methods limits our ability to analyze the key factors regulating the heterogeneity in strawberry stolon buds. Results From observation, we found that the axillary bud located in the first node quickly stepped into dormancy (DSB), after several bract and leaf buds were differentiated. The stolon apical meristem (SAM) degenerated as the new ramet leaf buds (RLB), and the new active axillary stolon buds (ASB) differentiated continually after the differentiation of the first leaf. Using the tandem mass tags (TMT) labeling method, a total of 7271 strawberry proteins were identified. Between ASB and DSB, the spliceosome DEPs, such as Ser/Arg-rich (SR) and heterogeneous nuclear ribonucleoprotein particle (hnRNP), showed the highest enrichment and high PPI connectivity. This indicated that the differences in DEPs (e.g., SF-3A and PK) at the transcriptional level may be causing the differences between the physiological statuses of ASB and DSB. As expected, the photosynthetic pre-form RLB mainly differentiated from ASB and DSB judging by the DEP enrichment of photosynthesis. However, there are still other specialized features of DEPs between RLB and DSB and between ASB and DSB. The DEPs relative to DNA duplication [e.g., minichromosome maintenance protein (MCM 2, 3, 4, 7)], provide a strong hint of functional gene duplication leading the bud heterogeneity between RLB and DSB. In addition, the top fold change DEP of LSH 10-like might be involved in the degeneration of SAM into RLBs, based on its significant function in modulating the plant shoot initiation. As for RLB/ASB, the phenylpropanoid biosynthesis pathway probably regulates the ramet axillary bud specialization, and further promotes the differentiation of xylem when ASB develops into a new stolon [e.g., cinnamyl alcohol dehydrogenase 1 (CAD1) and phenylalanine ammonia-lyase 1 (PAL1)]. Conclusions By using phenotypic observation combined with proteomic networks with different types of strawberry stolon buds, the definite dormancy phase of DSB was identified, and the biological pathways and gene networks that might be responsible for heterogeneity among different stolon buds in strawberry were also revealed.
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::06b777649652e5c99c24181d0b600ad6
https://doi.org/10.21203/rs.2.10717/v4
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....06b777649652e5c99c24181d0b600ad6
قاعدة البيانات: OpenAIRE