Enhanced water transport and salt rejection through hydrophobic zeolite pores

التفاصيل البيبلوغرافية
العنوان: Enhanced water transport and salt rejection through hydrophobic zeolite pores
المؤلفون: Jongho Lee, Rohit Karnik, Tahar Laoui, Evelyn N. Wang, Sean C. O'Hern, Thomas Humplik
المصدر: Nanotechnology. 28:505703
بيانات النشر: IOP Publishing, 2017.
سنة النشر: 2017
مصطلحات موضوعية: Water transport, Materials science, Mechanical Engineering, Bioengineering, 02 engineering and technology, General Chemistry, 010402 general chemistry, 021001 nanoscience & nanotechnology, Osmosis, 01 natural sciences, Desalination, 0104 chemical sciences, Membrane, Chemical engineering, Mechanics of Materials, General Materials Science, Wetting, Electrical and Electronic Engineering, 0210 nano-technology, Reverse osmosis, Porous medium, Zeolite
الوصف: The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).
تدمد: 1361-6528
0957-4484
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1461dd9b7b3e4a167bb691b49671374e
https://doi.org/10.1088/1361-6528/aa9773
حقوق: CLOSED
رقم الأكسشن: edsair.doi.dedup.....1461dd9b7b3e4a167bb691b49671374e
قاعدة البيانات: OpenAIRE