Ryanodine receptor leak triggers fiber Ca2+ redistribution to preserve force and elevate basal metabolism in skeletal muscle

التفاصيل البيبلوغرافية
العنوان: Ryanodine receptor leak triggers fiber Ca2+ redistribution to preserve force and elevate basal metabolism in skeletal muscle
المؤلفون: Robyn M. Murphy, Barnaby P. Frankish, Bradley S. Launikonis, Harriet P. Lo, Paul D. Allen, Aldo Meizoso-Huesca, Luke Pearce, Cedric R. Lamboley, Chris van der Poel, Charles Ferguson, Robert G. Parton, Crystal Seng, Christopher John Barclay, Vikas Kaura, Daniel P. Singh, Philip M. Hopkins
المصدر: Science Advances
بيانات النشر: La Trobe, 2021.
سنة النشر: 2021
مصطلحات موضوعية: RYR1, Leak, Multidisciplinary, Physiology, Chemistry, Ryanodine receptor, Endoplasmic reticulum, Biophysics, SciAdv r-articles, Skeletal muscle, Heatstroke, medicine.disease, musculoskeletal system, Cell biology, medicine.anatomical_structure, Basal metabolic rate, medicine, Biomedicine and Life Sciences, medicine.symptom, tissues, Research Article, Muscle contraction, Uncategorized
الوصف: Description
RyR1 Ca2+ leak causes a cascade of events that shifts Ca2+ to the cytoplasm and mitochondria, supporting force generation.
Muscle contraction depends on tightly regulated Ca2+ release. Aberrant Ca2+ leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca2+ leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca2+ leak initiates a cascade of events that cause precise redistribution of Ca2+ among the SR, cytoplasm, and mitochondria through altering the Ca2+ permeability of the transverse tubular system membrane. This redistribution of Ca2+ allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations.
DOI: 10.26181/6196ee582c804
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1f23394ad8035d2256dda06c6eae76be
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....1f23394ad8035d2256dda06c6eae76be
قاعدة البيانات: OpenAIRE