3D co-culture model of endothelial colony-forming cells (ECFCs) reverses late passage adipose-derived stem cell senescence for wound healing

التفاصيل البيبلوغرافية
العنوان: 3D co-culture model of endothelial colony-forming cells (ECFCs) reverses late passage adipose-derived stem cell senescence for wound healing
المؤلفون: Junrong Cai, Mimi Lalrimawii Fanai, Jing Wang, Shengqian Zhu, Jingwei Feng, Wansheng Hu
المصدر: Stem Cell Research & Therapy, Vol 11, Iss 1, Pp 1-11 (2020)
Stem Cell Research & Therapy
بيانات النشر: Springer Science and Business Media LLC, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Adipose-derived stem cells, 0301 basic medicine, endocrine system, 3-D co-culture, animal diseases, Cell, Neovascularization, Physiologic, Wound healing, Medicine (miscellaneous), Adipose tissue, Biochemistry, Genetics and Molecular Biology (miscellaneous), Flow cytometry, lcsh:Biochemistry, Mice, 03 medical and health sciences, chemistry.chemical_compound, 0302 clinical medicine, In vivo, Hyaluronic acid, medicine, Animals, lcsh:QD415-436, Cells, Cultured, Cellular Senescence, Cell Proliferation, lcsh:R5-920, medicine.diagnostic_test, Chemistry, Stem Cells, Research, Endothelial colony-forming cells, hemic and immune systems, Cell Biology, Coculture Techniques, eye diseases, Cell biology, 030104 developmental biology, medicine.anatomical_structure, Adipose Tissue, 030220 oncology & carcinogenesis, Molecular Medicine, Hepatocyte growth factor, Stem cell, lcsh:Medicine (General), tissues, medicine.drug
الوصف: BackgroundExtensive passage of adipose-derived stem cells (ASCs) in vitro leads to loss of function. Endothelial colony-forming cells (ECFCs) can be isolated from adult peripheral blood. A 3D co-culture system may rescue in vitro ASC senescence.MethodsA 3D co-culture model was successfully established using hyaluronic acid (HA) gel and a 10:1 ratio of late-passage ASCs and ECFCs. Cell density and culture conditions were optimized. Stem cell phenotype was characterized by flow cytometry. ELISA was used to measure the trophic effect of angiogenic growth factors and compare the effects of these factors between the 3-D co-culture and single-cell culture. Therapeutic potential of ASC/ECFC 3-D co-cultures was evaluated in a mouse chronic injury model.ResultsFollowing incubation in a HA substrate 3D co-culture system, ASC morphology, phenotype, secretory profile, and differentiation capacity were restored. The ASC/ECFC co-culture increased the secretion of cytokines, such as hepatocyte growth factor, compared with single-cell 3D culture or monolayer culture. Mice radiation-ulcer wounds treated with ASC/ECFC 3-D co-cultures (spheroids) showed epithelialization and improved healing compared with wounds treated with ASCs or ECFCs alone. Further, transplanted ASC/ECFC spheroids exhibited superior angiogenic potential due to the ability of the ASCs to transdifferentiate into pericytes.Conclusion3D co-culture of ECFCs and ASCs in vitro restored native ASC properties by reversing cellular senescence and loss of trophic function. Transplant of ASC/ECFC 3D spheroids in vivo demonstrated pro-angiogenic capacity with improved therapeutic potential.
تدمد: 1757-6512
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::220eddc636734e95cb32924b2f7ab802
https://doi.org/10.1186/s13287-020-01838-w
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....220eddc636734e95cb32924b2f7ab802
قاعدة البيانات: OpenAIRE