Universal quantum logic in hot silicon qubits

التفاصيل البيبلوغرافية
العنوان: Universal quantum logic in hot silicon qubits
المؤلفون: L. Petit, H. G. J. Eenink, M. Russ, W. I. L. Lawrie, N. W. Hendrickx, S. G. J. Philips, J. S. Clarke, L. M. K. Vandersypen, M. Veldhorst
بيانات النشر: arXiv, 2019.
سنة النشر: 2019
مصطلحات موضوعية: FOS: Physical sciences, 02 engineering and technology, 01 natural sciences, Quantum logic, symbols.namesake, Pauli exclusion principle, Computer Science::Emerging Technologies, 0103 physical sciences, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Hardware_INTEGRATEDCIRCUITS, Quantum information, Hardware_ARITHMETICANDLOGICSTRUCTURES, 010306 general physics, Spin-½, Quantum computer, Physics, Quantum Physics, Multidisciplinary, Condensed Matter - Mesoscale and Nanoscale Physics, business.industry, Electrical engineering, 021001 nanoscience & nanotechnology, Coherent control, Logic gate, Qubit, symbols, 0210 nano-technology, business, Quantum Physics (quant-ph)
الوصف: Quantum computation requires many qubits that can be coherently controlled and coupled to each other. Qubits that are defined using lithographic techniques are often argued to be promising platforms for scalability, since they can be implemented using semiconductor fabrication technology. However, leading solid-state approaches function only at temperatures below 100 mK, where cooling power is extremely limited, and this severely impacts the perspective for practical quantum computation. Recent works on spins in silicon have shown steps towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes, gate-based spin readout, and coherent single-spin control, but the crucial two-qubit logic gate has been missing. Here we demonstrate that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set above one Kelvin. We obtain single-qubit control via electron-spin-resonance (ESR) and readout using Pauli spin blockade. We show individual coherent control of two qubits and measure single-qubit fidelities up to 99.3 %. We demonstrate tunability of the exchange interaction between the two spins from 0.5 up to 18 MHz and use this to execute coherent two-qubit controlled rotations (CROT). The demonstration of `hot' and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits hosting the quantum hardware and their control circuitry all on the same chip, providing a scalable approach towards practical quantum information.
DOI: 10.48550/arxiv.1910.05289
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c8c0068e40bc9fe8c28624d369ccbac
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....2c8c0068e40bc9fe8c28624d369ccbac
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.48550/arxiv.1910.05289