Salvaging high-quality genomes of microbial species from a meromictic lake using a hybrid sequencing approach

التفاصيل البيبلوغرافية
العنوان: Salvaging high-quality genomes of microbial species from a meromictic lake using a hybrid sequencing approach
المؤلفون: Hsiu-Hui Chiu, Sen-Lin Tang, Andrey G. Degermendzhy, Yu-Hsiang Chen, Denis Yu. Rogozin, Pei-Wen Chiang
المصدر: Communications Biology
Communications Biology, Vol 4, Iss 1, Pp 1-12 (2021)
سنة النشر: 2021
مصطلحات موضوعية: Water microbiology, Bacteria, QH301-705.5, health care facilities, manpower, and services, education, Medicine (miscellaneous), High-Throughput Nucleotide Sequencing, Computational biology, Bacterial genome size, Biology, Genome, General Biochemistry, Genetics and Molecular Biology, Article, Siberia, Lakes, Nanopore Sequencing, Workflow, Metagenomics, health services administration, Bacterial genetics, Metagenome, Biology (General), General Agricultural and Biological Sciences, health care economics and organizations, Genome, Bacterial
الوصف: Most of Earth’s bacteria have yet to be cultivated. The metabolic and functional potentials of these uncultivated microorganisms thus remain mysterious, and the metagenome-assembled genome (MAG) approach is the most robust method for uncovering these potentials. However, MAGs discovered by conventional metagenomic assembly and binning are usually highly fragmented genomes with heterogeneous sequence contamination. In this study, we combined Illumina and Nanopore data to develop a new workflow to reconstruct 233 MAGs—six novel bacterial orders, 20 families, 66 genera, and 154 species—from Lake Shunet, a secluded meromictic lake in Siberia. With our workflow, the average N50 of reconstructed MAGs greatly increased 10–40-fold compared to when the conventional Illumina assembly and binning method were used. More importantly, six complete MAGs were recovered from our datasets. The recovery of 154 novel species MAGs from a rarely explored lake greatly expands the current bacterial genome encyclopedia.
Chen and colleagues develop a workflow for assembling high quality metagenome-associated genomes for microbial species using long and short reads, in this case from a meromictic lake. A full, detailed workflow is provided in for use by the community.
تدمد: 2399-3642
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::420bd283408676432796afbff4f80b36
https://pubmed.ncbi.nlm.nih.gov/34426638
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....420bd283408676432796afbff4f80b36
قاعدة البيانات: OpenAIRE