Bubble CPAP Support after Discontinuation of Mechanical Ventilation Protects Rat Lungs with Ventilator-Induced Lung Injury

التفاصيل البيبلوغرافية
العنوان: Bubble CPAP Support after Discontinuation of Mechanical Ventilation Protects Rat Lungs with Ventilator-Induced Lung Injury
المؤلفون: Yen Kuang Lin, Hsiu Chu Chou, Chun Shan Wu, Chung-Ming Chen, Liang Ti Huang
المصدر: Respiration; international review of thoracic diseases. 91(2)
سنة النشر: 2015
مصطلحات موضوعية: Pulmonary and Respiratory Medicine, Male, Nitric Oxide Synthase Type III, medicine.medical_treatment, Ventilator-Induced Lung Injury, Chemokine CXCL2, 030204 cardiovascular system & hematology, Lung injury, Severity of Illness Index, Rats, Sprague-Dawley, 03 medical and health sciences, Random Allocation, 0302 clinical medicine, medicine, Animals, Continuous positive airway pressure, Mechanical ventilation, Lung, biology, Respiratory distress, Continuous Positive Airway Pressure, business.industry, Interleukin-6, respiratory system, Immunohistochemistry, Respiration, Artificial, respiratory tract diseases, Nitric oxide synthase, medicine.anatomical_structure, 030228 respiratory system, Bubble CPAP, Anesthesia, biology.protein, Breathing, business, Bronchoalveolar Lavage Fluid
الوصف: Background: Bubble continuous positive airway pressure (BCPAP) has been used in neonates with respiratory distress for decades, but its lung-protective effect and underlying mechanism has not been investigated. Objectives: To test the hypothesis that BCPAP use after extubation decreases lung injury and that alterations to lung nitric oxide synthase (NOS) 3 expression may be one of the underlying mechanisms. Methods: We compared gas exchange, lung injury severity, and lung NOS expression among rats with ventilator-induced lung injury (VILI) treated with either BCPAP or spontaneous breathing. After high tidal volume ventilation for 30 min, the rats were randomly divided to three groups: a control group underwent spontaneous breathing (n = 7), and two BCPAP groups were treated with the bubble technique with either a 2.5-mm-diameter (n = 7) or a 5.5-mm-diameter (n = 7) expiratory limb for 2 h. Results: The bubble technique (2.5 and 5.5 mm diameter combined) resulted in a significantly higher PaO2, decreased alveolar protein levels (1.01 vs. 1.43 mg/kg, p < 0.05), a lower lung injury score (3.87 vs. 4.86, p < 0.05), and decreased NOS3 expression (1.99 vs. 3.32, p < 0.05) compared to spontaneous breathing in the control group. BCPAP with a 2.5-mm-diameter and with a 5.5-mm-diameter expiratory limb was not different with regard to gas exchange, alveolar protein levels, and lung injury scores, but there was a trend for lower NOS3 expression in the 5.5-mm group (1.41 vs. 2.56, p = 0.052). Conclusions: BCPAP decreases lung injury in rats with VILI after stopping mechanical ventilation. Attenuation of lung NOS3 expression may be one of the underlying mechanisms.
تدمد: 1423-0356
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::424b8709f4a412cd22079b92abd251e9
https://pubmed.ncbi.nlm.nih.gov/26800273
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....424b8709f4a412cd22079b92abd251e9
قاعدة البيانات: OpenAIRE