Engineering acetyl-CoA supply and ERG9 repression to enhance mevalonate production in Saccharomyces cerevisiae

التفاصيل البيبلوغرافية
العنوان: Engineering acetyl-CoA supply and ERG9 repression to enhance mevalonate production in Saccharomyces cerevisiae
المؤلفون: José L. Avalos, Scott A. Wegner, Yanfei Zhang, Jhong-Min Chen, Deepak Dugar, Samantha S. Ip
المصدر: Journal of industrial microbiologybiotechnology. 48(9-10)
سنة النشر: 2021
مصطلحات موضوعية: biology, Coenzyme A, Acetyl-CoA, Saccharomyces cerevisiae, Acetate-CoA Ligase, Mevalonic Acid, Salmonella enterica, Bioengineering, biology.organism_classification, Applied Microbiology and Biotechnology, Yeast, Metabolic engineering, chemistry.chemical_compound, chemistry, Biochemistry, Biosynthesis, Metabolic Engineering, Acetyl Coenzyme A, Enterococcus faecalis, Pantothenate kinase, Mevalonate pathway, Microorganisms, Genetically-Modified, Biotechnology
الوصف: Mevalonate is a key precursor in isoprenoid biosynthesis and a promising commodity chemical. Although mevalonate is a native metabolite in Saccharomyces cerevisiae, its production is challenged by the relatively low flux toward acetyl-CoA in this yeast. In this study we explore different approaches to increase acetyl-CoA supply in S. cerevisiae to boost mevalonate production. Stable integration of a feedback-insensitive acetyl-CoA synthetase (Se-acsL641P) from Salmonella enterica and the mevalonate pathway from Enterococcus faecalis results in the production of 1,390 ± 10 mg/l of mevalonate from glucose. While bifid shunt enzymes failed to improve titers in high-producing strains, inhibition of squalene synthase (ERG9) results in a significant enhancement. Finally, increasing coenzyme A (CoA) biosynthesis by overexpression of pantothenate kinase (CAB1) and pantothenate supplementation further increased production to 3,830 ± 120 mg/l. Using strains that combine these strategies in lab-scale bioreactors results in the production of 13.3 ± 0.5 g/l, which is ∼360-fold higher than previously reported mevalonate titers in yeast. This study demonstrates the feasibility of engineering S. cerevisiae for high-level mevalonate production.
تدمد: 1476-5535
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::46213d014ca0da44d4a4bd3995a1a9b1
https://pubmed.ncbi.nlm.nih.gov/34351398
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....46213d014ca0da44d4a4bd3995a1a9b1
قاعدة البيانات: OpenAIRE