A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO2-Induced Stomatal Closure

التفاصيل البيبلوغرافية
العنوان: A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO2-Induced Stomatal Closure
المؤلفون: Jaakko Kangasjärvi, Ebe Merilo, Kirk Overmyer, Mikael Brosché, Ervin Valk, Jarkko Salojärvi, Maija Sierla, Hanna Hõrak, Yuh-Shuh Wang, Julian I. Schroeder, Priit Pechter, Hannes Kollist, Maris Nuhkat, Cun Wang, Kadri Tõldsepp, Mart Loog
المصدر: The Plant Cell. 28:2493-2509
بيانات النشر: Oxford University Press (OUP), 2016.
سنة النشر: 2016
مصطلحات موضوعية: 0106 biological sciences, 0301 basic medicine, Arabidopsis, Xenopus, Plant Science, medicine.disease_cause, 01 natural sciences, 03 medical and health sciences, chemistry.chemical_compound, Guard cell, medicine, Arabidopsis thaliana, Protein kinase A, Abscisic acid, Research Articles, Mutation, biology, Arabidopsis Proteins, Kinase, organic chemicals, fungi, Membrane Proteins, food and beverages, Cell Biology, Carbon Dioxide, biology.organism_classification, Cell biology, 030104 developmental biology, chemistry, Biochemistry, Plant Stomata, Mitogen-Activated Protein Kinases, Signal transduction, Protein Kinases, Signal Transduction, 010606 plant biology & botany
الوصف: Activation of the guard cell S-type anion channel SLAC1 is important for stomatal closure in response to diverse stimuli, including elevated CO2 The majority of known SLAC1 activation mechanisms depend on abscisic acid (ABA) signaling. Several lines of evidence point to a parallel ABA-independent mechanism of CO2-induced stomatal regulation; however, molecular details of this pathway remain scarce. Here, we isolated a dominant mutation in the protein kinase HIGH LEAF TEMPERATURE1 (HT1), an essential regulator of stomatal CO2 responses, in an ozone sensitivity screen of Arabidopsis thaliana The mutation caused constitutively open stomata and impaired stomatal CO2 responses. We show that the mitogen-activated protein kinases (MPKs) MPK4 and MPK12 can inhibit HT1 activity in vitro and this inhibition is decreased for the dominant allele of HT1. We also show that HT1 inhibits the activation of the SLAC1 anion channel by the protein kinases OPEN STOMATA1 and GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) in Xenopus laevis oocytes. Notably, MPK12 can restore SLAC1 activation in the presence of HT1, but not in the presence of the dominant allele of HT1. Based on these data, we propose a model for sequential roles of MPK12, HT1, and GHR1 in the ABA-independent regulation of SLAC1 during CO2-induced stomatal closure.
تدمد: 1532-298X
1040-4651
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49b06a3c65f245a8604310eec17498cb
https://doi.org/10.1105/tpc.16.00131
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....49b06a3c65f245a8604310eec17498cb
قاعدة البيانات: OpenAIRE