A tracing method of airborne bacteria transmission across built environments

التفاصيل البيبلوغرافية
العنوان: A tracing method of airborne bacteria transmission across built environments
المؤلفون: Baoming Li, Weichao Zheng, Hongning Wang, Jinxin Zeng, Chang-Wei Lei, Yongxiang Wei, Zonggang Li
المصدر: Building and Environment
بيانات النشر: Elsevier BV, 2019.
سنة النشر: 2019
مصطلحات موضوعية: Environmental Engineering, Biological decay, Microorganism, Geography, Planning and Development, 0211 other engineering and technologies, Airborne bacteria tracing, 02 engineering and technology, 010501 environmental sciences, Tracing, 01 natural sciences, Airborne transmission, Article, Microbiology, TRACER, Building environment, 021108 energy, Aerosolization, 0105 earth and related environmental sciences, Civil and Structural Engineering, biology, Electroporation, Building and Construction, biology.organism_classification, Environmental science, Bacteria, Bioaerosol
الوصف: Disease transmission across built environments has been found to be a serious health risk. Airborne transmission is a vital route of disease infection caused by bacteria and virus. However, tracing methods of airborne bacteria in both lab and field research failed to veritably express the transporting process of microorganism in the air. A new tracing method of airborne bacteria used for airborne transmission was put forward and demonstrated its feasibility by conducting a field evaluation on the basis of genetic modification and bioaerosol technology. A specific gene fragment (pFPV-mCherry fluorescent protein plasmid) was introduced into nonpathogenic E. coli DH5α as tracer bacteria by high-voltage electroporation. Gel electrophoresis and DNA sequencing proved the success of the synthesis. Genetic stability, effect of aerosolization on the survival rate of tracer bacteria, and the application of the tracer bacteria to the airborne bacteria transmission were examined in both lab and field. Both the introduced plasmid stability rates of tracer E. coli in pre-aerosolization and post-aerosolization were above 95% in five test days. Survival rate of tracer E. coli at 97.5% ± 1.2% through aerosolization was obtained by an air-atomizer operated at an air pressure of 30 Psi. In the field experiment, the airborne transmission of E. coli between poultry houses was proved and emitted E. coli was more easily transmitted into self-house than adjacent house due to the ventilation design and weather condition. Our results suggested that the tracing method of airborne bacteria was available for the investigation of airborne microbial transmission across built environments.
Highlights • Both physical and biological characteristics of airborne bacteria were considered. • Field validation was conducted between animal houses and proved it feasible. • Airborne E. coli could be transmitted between adjacent animal buildings. • Relative biological decay is promising in the validation of disease transport model.
تدمد: 0360-1323
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::502b5430441af8f2c54f36f24cdd990c
https://doi.org/10.1016/j.buildenv.2019.106335
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....502b5430441af8f2c54f36f24cdd990c
قاعدة البيانات: OpenAIRE