Triage of in vivo burn injuries and prediction of wound healing outcome using neural networks and modeling of the terahertz permittivity based on the double Debye dielectric parameters

التفاصيل البيبلوغرافية
العنوان: Triage of in vivo burn injuries and prediction of wound healing outcome using neural networks and modeling of the terahertz permittivity based on the double Debye dielectric parameters
المؤلفون: Mahmoud E. Khani, Zachery B. Harris, Omar B. Osman, Adam J. Singer, M. Hassan Arbab
المصدر: Biomed Opt Express
بيانات النشر: Optica Publishing Group, 2023.
سنة النشر: 2023
مصطلحات موضوعية: Atomic and Molecular Physics, and Optics, Article, Biotechnology
الوصف: The initial assessment of the depth of a burn injury during triage forms the basis for determination of the course of the clinical treatment plan. However, severe skin burns are highly dynamic and hard to predict. This results in a low accuracy rate of about 60 - 75% in the diagnosis of partial-thickness burns in the acute post-burn period. Terahertz time-domain spectroscopy (THz-TDS) has demonstrated a significant potential for non-invasive and timely estimation of the burn severity. Here, we describe a methodology for the measurement and numerical modeling of the dielectric permittivity of the in vivo porcine skin burns. We use the double Debye dielectric relaxation theory to model the permittivity of the burned tissue. We further investigate the origins of dielectric contrast between the burns of various severity, as determined histologically based on the percentage of the burned dermis, using the empirical Debye parameters. We demonstrate that the five parameters of the double Debye model can form an artificial neural network classification algorithm capable of automatic diagnosis of the severity of the burn injuries, and predicting its ultimate wound healing outcome by forecasting its re-epithelialization status in 28 days. Our results demonstrate that the Debye dielectric parameters provide a physics-based approach for the extraction of the biomedical diagnostic markers from the broadband THz pulses. This method can significantly boost dimensionality reduction of THz training data in artificial intelligence models and streamline machine learning algorithms.
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d5bfdb6a86bcaf9504a5d7b8291d90c
https://europepmc.org/articles/PMC9979665/
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....5d5bfdb6a86bcaf9504a5d7b8291d90c
قاعدة البيانات: OpenAIRE