Chlorophyll f synthesis by a super-rogue photosystem II complex

التفاصيل البيبلوغرافية
العنوان: Chlorophyll f synthesis by a super-rogue photosystem II complex
المؤلفون: Jianfeng Yu, Shengxi Shao, Martina Bečková, Joko P Trinugroho, Ziyu Zhao, Roman Sobotka, Josef Komenda, Peter J. Nixon, James W. Murray
المساهمون: Biotechnology and Biological Sciences Research Council (BBSRC)
بيانات النشر: Nature Research, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Chlorophyll, 0106 biological sciences, 0301 basic medicine, Cyanobacteria, Photosystem II, Chlorophyll f, Stereochemistry, Protein subunit, Plant Science, Photosynthesis, 01 natural sciences, Cofactor, 03 medical and health sciences, chemistry.chemical_compound, Sequence Analysis, Protein, ATP synthase, biology, Synechocystis, Photosystem II Protein Complex, biology.organism_classification, 030104 developmental biology, chemistry, biology.protein, Microorganisms, Genetically-Modified, 010606 plant biology & botany
الوصف: Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68c183cf16b3b616531e44b220fefa4c
http://hdl.handle.net/10044/1/77675
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....68c183cf16b3b616531e44b220fefa4c
قاعدة البيانات: OpenAIRE