High-fidelity Characterization on Anisotropic Thermal Conductivity of Carbon Nanotube Sheets and on Their Effects of Thermal Enhancement of Nanocomposites

التفاصيل البيبلوغرافية
العنوان: High-fidelity Characterization on Anisotropic Thermal Conductivity of Carbon Nanotube Sheets and on Their Effects of Thermal Enhancement of Nanocomposites
المؤلفون: Michael De Volder, Xiao Zhang, Wei Tan, Fiona Smail, Adam M. Boies, Norman A. Fleck
المساهمون: Zhang, Xiao [0000-0002-3022-2830], Tan, Wei [0000-0002-6380-9259], Smail, Fiona [0000-0002-1725-3683], De Volder, Michael [0000-0003-1955-2270], Fleck, Norman [0000-0003-0224-1804], Boies, Adam [0000-0003-2915-3273], Apollo - University of Cambridge Repository
بيانات النشر: IOP Publishing, 2018.
سنة النشر: 2018
مصطلحات موضوعية: Materials science, Bioengineering, 02 engineering and technology, Carbon nanotube, 010402 general chemistry, 01 natural sciences, Heat capacity, Nanomaterials, law.invention, Thermal conductivity, law, Thermal, General Materials Science, thermal conductivity, composite, Electrical and Electronic Engineering, Composite material, In situ polymerization, carbon nanotube, steady-state, Nanocomposite, Mechanical Engineering, General Chemistry, 021001 nanoscience & nanotechnology, Thermal conduction, 0104 chemical sciences, Mechanics of Materials, infrared, heat dissipation, nanomaterial, 0210 nano-technology
الوصف: Some assemblies of nanomaterials, like carbon nanotube (CNT) sheet or film, always show outstanding and anisotropic thermal properties. However, there is still a lack of comprehensive thermal conductivity (κ) characterizations on CNT sheets, as well as a lack of estimations of their true contributions on thermal enhancement of polymer composites when used as additives. Always, these characterizations were hindered by the low heat capacity, anisotropic thermal properties or low electrical conductivity of assemblies and their nanocomposites. The transient κ measurement and calculations were also hampered by accurate determination of parameters, like specific heat capacity, density and cross-section, which could be difficult and controversial for nanomaterials, like CNT sheets. Here, to measure anisotropic κ of CNT sheets directly with high fidelity, we modified the conventional steady-state method by measuring under vacuum and by infrared camera, and then comparing temperature profiles on both reference standard material and a CNT sheet sample. The highly anisotropic thermal conductivities of CNT sheets were characterized comprehensively, with κ/ρ in alignment direction as ∼95 mW m2 K-1 kg-1. Furthermore, by comparing the measured thermal properties of different CNT-epoxy resin composites, the heat conduction pathway created by the CNT hierarchical network was demonstrated to remain intact after the in situ polymerization and curing process. The reliable and direct κ measurement rituals used here, dedicated to nanomaterials, will be also essential to assist in assemblies' application to heat dissipation and composite thermal enhancement.
وصف الملف: application/pdf
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a93991ecec94edb4942a71bab32a8a0
https://www.repository.cam.ac.uk/handle/1810/285896
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....6a93991ecec94edb4942a71bab32a8a0
قاعدة البيانات: OpenAIRE