Micro-structural effects of irradiation temperature and helium content in neutron irradiated B-alloyed Eurofer97-1 steel

التفاصيل البيبلوغرافية
العنوان: Micro-structural effects of irradiation temperature and helium content in neutron irradiated B-alloyed Eurofer97-1 steel
المؤلفون: Michael Rieth, M. Valli, R. Coppola, Rainer Lindau, Anton Möslang, Michael Klimenkov
المساهمون: Valli, M., Coppola, R.
المصدر: Nuclear Materials and Energy
Nuclear Materials and Energy, Vol 17, Iss, Pp 40-47 (2018)
سنة النشر: 2018
مصطلحات موضوعية: inorganic chemicals, Nuclear and High Energy Physics, Materials science, Materials Science (miscellaneous), Small angle neutron scattering, Analytical chemistry, chemistry.chemical_element, Helium effect, Neutron scattering, 01 natural sciences, 010305 fluids & plasmas, 0103 physical sciences, Electron microscopy, Neutron, Irradiation, Dissolution, Helium, 010302 applied physics, Neutron irradiation, lcsh:TK9001-9401, Helium effects, Nuclear Energy and Engineering, Volume (thermodynamics), chemistry, Martensite, lcsh:Nuclear engineering. Atomic power, Order of magnitude
الوصف: The micro-structural effects of different neutron irradiation temperatures and helium contents, for 16 dpa dose, have been investigated by means of small-angle neutron scattering (SANS) in B-alloyed ferritic/martensitic steel Eurofer97-1 (0.12 C, 9 Cr, 0.2 V, 1.08 W wt%, B concentrations up to 1000 ppm); due to B transmutations, fusion relevant He/dpa values are expected to be produced under neutron irradiation. SANS measurements have been carried out on a sample irradiated at 350 °C, with estimated helium content of 5600 appm, and compared to previous SANS results, obtained on two other irradiated samples of this same B-alloyed steel. These new measurements confirm that for such high helium contents the SANS cross-section increases in order of magnitude and the magnetic SANS component is strongly reduced, compared to lower helium content (400 appm). Such effects are attributed to increase in helium bubbles density and to the presence of micro-cavities, produced after dissolution of large B-carbides. The SANS data analysis procedure has been improved, also thanks to the additional information provided by the new measurements, and more accurate helium bubble size distributions have been obtained for all the investigated samples. For 5600 appm helium content, bubble volume fractions are found of 0.025 for the sample irradiated at 350 °C and of 0.041 for the previously investigated sample irradiated at 400 °C, significantly increasing with the irradiation temperature. These values are approximately one order of magnitude larger than the value of 0.003 previously found for the sample with 400 appm helium. The size distributions are compared with electron microscopy observations of these same samples. It appears that the occurrence of complex micro-structural changes in irradiated Eurofer97-1 steel should be taken in due account when considering its application under high He/dpa ratio values. Keywords: Helium effects, Neutron irradiation, Small angle neutron scattering, Electron microscopy
تدمد: 2352-1791
DOI: 10.1016/j.nme.2018.08.005
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::727361a69161f4d730908aff534d81e7
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....727361a69161f4d730908aff534d81e7
قاعدة البيانات: OpenAIRE
الوصف
تدمد:23521791
DOI:10.1016/j.nme.2018.08.005