Quantification of Trace-Level Silicon Doping in AlxGa1–xN Films Using Wavelength-Dispersive X-Ray Microanalysis

التفاصيل البيبلوغرافية
العنوان: Quantification of Trace-Level Silicon Doping in AlxGa1–xN Films Using Wavelength-Dispersive X-Ray Microanalysis
المؤلفون: Ben Buse, Michael Kneissl, Tim Wernicke, Frank Mehnke, Lucia Spasevski, Daniel A. Hunter, Paul R. Edwards, Robert W. Martin, Johannes Enslin, Peter J. Parbrook, Humberto M. Foronda
المصدر: Microscopy and Microanalysis. 27:696-704
بيانات النشر: Oxford University Press (OUP), 2021.
سنة النشر: 2021
مصطلحات موضوعية: 010302 applied physics, Materials science, Silicon, Spectrometer, Dopant, Doping, Analytical chemistry, Wide-bandgap semiconductor, chemistry.chemical_element, Cathodoluminescence, 02 engineering and technology, 021001 nanoscience & nanotechnology, 01 natural sciences, Secondary ion mass spectrometry, chemistry, 0103 physical sciences, 0210 nano-technology, Spectroscopy, Instrumentation, QC
الوصف: Wavelength-dispersive X-ray (WDX) spectroscopy was used to measure silicon atom concentrations in the range 35–100 ppm [corresponding to (3–9) × 1018 cm−3] in doped AlxGa1–xN films using an electron probe microanalyser also equipped with a cathodoluminescence (CL) spectrometer. Doping with Si is the usual way to produce the n-type conducting layers that are critical in GaN- and AlxGa1–xN-based devices such as LEDs and laser diodes. Previously, we have shown excellent agreement for Mg dopant concentrations in p-GaN measured by WDX with values from the more widely used technique of secondary ion mass spectrometry (SIMS). However, a discrepancy between these methods has been reported when quantifying the n-type dopant, silicon. We identify the cause of discrepancy as inherent sample contamination and propose a way to correct this using a calibration relation. This new approach, using a method combining data derived from SIMS measurements on both GaN and AlxGa1–xN samples, provides the means to measure the Si content in these samples with account taken of variations in the ZAF corrections. This method presents a cost-effective and time-saving way to measure the Si doping and can also benefit from simultaneously measuring other signals, such as CL and electron channeling contrast imaging.
وصف الملف: application/pdf
تدمد: 1435-8115
1431-9276
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7bc9636cfb5e607a24cedc3a2295b75e
https://doi.org/10.1017/s1431927621000568
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....7bc9636cfb5e607a24cedc3a2295b75e
قاعدة البيانات: OpenAIRE