A numerical renormalization method for quasi-conservative periodic attractors

التفاصيل البيبلوغرافية
العنوان: A numerical renormalization method for quasi-conservative periodic attractors
المؤلفون: Corrado Falcolini, Laura Tedeschini-Lalli
المساهمون: Falcolini, Corrado, TEDESCHINI LALLI, Laura
سنة النشر: 2020
مصطلحات موضوعية: Physics, Pure mathematics, Sequence, Plane (geometry), Computer Science::Information Retrieval, Image (category theory), Hénon map, Computational Mechanics, Space (mathematics), Renormalization algorithms, Bifurcation curve, Renormalization, Linear map, Computational Mathematics, Periodic orbit, Saddle, Rotation number
الوصف: We describe a renormalization method in maps of the plane \begin{document}$ (x, y) $\end{document} , with constant Jacobian \begin{document}$ b $\end{document} and a second parameter \begin{document}$ a $\end{document} acting as a bifurcation parameter. The method enables one to organize high period periodic attractors and thus find hordes of them in quasi-conservative maps (i.e. \begin{document}$ |b| = 1-\varepsilon $\end{document} ), when sharing the same rotation number. Numerical challenges are the high period, and the necessary extreme vicinity of many such different points, which accumulate on a hyperbolic periodic saddle. The periodic points are organized, in the \begin{document}$ (x, y, a) $\end{document} space, in sequences of diverging period, that we call "branches". We define a renormalization approach, by "hopping" among branches to maximize numerical convergence. Our numerical renormalization has met two kinds of numerical instabilities, well localized in certain ranges of the period for the parameter \begin{document}$ a $\end{document} (see [ 3 ]) and in other ranges of the period for the dynamical plane \begin{document}$ (x, y) $\end{document} . For the first time we explain here how specific numerical instabilities depend on geometry displacements in dynamical plane \begin{document}$ (x, y) $\end{document} . We describe how to take advantage of such displacement in the sequence, and of the high period, by moving forward from one branch to its image under dynamics. This, for high period, allows entering the hyperbolicity neighborhood of a saddle, where the dynamics is conjugate to a hyperbolic linear map. The subtle interplay of branches and of the hyperbolic neighborhood can hopefully help visualize the renormalization approach theoretically discussed in [ 7 ] for highly dissipative systems.
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80f4e9ca1e3a414e66fb72e5960fd767
https://hdl.handle.net/11590/375762
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....80f4e9ca1e3a414e66fb72e5960fd767
قاعدة البيانات: OpenAIRE