Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes

التفاصيل البيبلوغرافية
العنوان: Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes
المؤلفون: Manish Kumar, Harish Vashisth, William A. Phillip, Codey B. Henderson, Guillermo C. Bazan, Patrick O. Saboe, Robert J. Hickey, Tingwei Ren, Daniel Tsai, Hengjing Yan, D. Ryan Barden, Woochul Song, Yue-xiao Shen, Hasin Feroz, Chao Lang, Paul S. Cremer, Peter J. Butler
المصدر: Nature Communications, Vol 9, Iss 1, Pp 1-11 (2018)
Nature Communications
بيانات النشر: Springer Science and Business Media LLC, 2018.
سنة النشر: 2018
مصطلحات موضوعية: Materials science, Polymers, Science, Detergents, Lipid Bilayers, General Physics and Astronomy, 02 engineering and technology, Molecular Dynamics Simulation, Aquaporins, 010402 general chemistry, 01 natural sciences, Permeability, General Biochemistry, Genetics and Molecular Biology, Microscopy, Electron, Transmission, Nano, Copolymer, Computer Simulation, lcsh:Science, Porosity, Microscopy, Confocal, Multidisciplinary, Water, Membranes, Artificial, Biological membrane, General Chemistry, 021001 nanoscience & nanotechnology, Publisher Correction, 0104 chemical sciences, Molecular Weight, Membrane, Chemical engineering, Permeability (electromagnetism), Liposomes, lcsh:Q, Salts, 0210 nano-technology, Selectivity, Porous medium
الوصف: Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m−2 h−1 bar−1 compared with 4–7 L m−2 h−1 bar−1) over similarly rated commercial membranes. Synthetic polymeric membranes used for separations suffer from permeability-selectivity trade-offs. Here the authors demonstrate how a bioinspired pillar[5]arene artificial water channel embedded in a copolymer membrane can improve selectivity while still achieving high permeability.
تدمد: 2041-1723
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80fd0133c0b9496ea3e9c32ecbe58486
https://doi.org/10.1038/s41467-018-04604-y
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....80fd0133c0b9496ea3e9c32ecbe58486
قاعدة البيانات: OpenAIRE