Aged vervet monkeys developing transthyretin amyloidosis with the human disease-causing Ile122 allele: a valid pathological model of the human disease

التفاصيل البيبلوغرافية
العنوان: Aged vervet monkeys developing transthyretin amyloidosis with the human disease-causing Ile122 allele: a valid pathological model of the human disease
المؤلفون: Hirofumi Jono, Satomi Kawahara, Yukio Ando, Yohei Misumi, James K. Chambers, Masayoshi Tasaki, Shinichiro Nakamura, Mitsuharu Ueda, Minami Nakamura, Naohide Ageyama, Konen Obayashi, Yumi Une, Satoru Shinriki, Erika Sasaki, Mineyuki Mizuguchi
المصدر: Laboratory investigation; a journal of technical methods and pathology. 92(3)
سنة النشر: 2011
مصطلحات موضوعية: endocrine system, Pathology, medicine.medical_specialty, Molecular Sequence Data, medicine.disease_cause, Pathology and Forensic Medicine, Human disease, Chlorocebus aethiops, medicine, Animals, Humans, Prealbumin, Vervet monkey, Amino Acid Sequence, Allele, Molecular Biology, Pathological, Alleles, Mutation, biology, Sequence Homology, Amino Acid, Amyloidosis, nutritional and metabolic diseases, Cell Biology, medicine.disease, biology.organism_classification, Phenotype, Recombinant Proteins, Transthyretin, Disease Models, Animal, Macaca fascicularis, Heart Function Tests, biology.protein, Amyloidosis, Familial, Sequence Alignment
الوصف: Mutant forms of transthyretin (TTR) cause the most common type of autosomal-dominant hereditary systemic amyloidosis. In addition, wild-type TTR causes senile systemic amyloidosis, a sporadic disease seen in the elderly. Although spontaneous development of TTR amyloidosis had not been reported in animals other than humans, we recently determined that two aged vervet monkeys (Chlorocebus pygerythrus) spontaneously developed systemic TTR amyloidosis. In this study here, we first determined that aged vervet monkeys developed TTR amyloidosis and showed cardiac dysfunction but other primates did not. We also found that vervet monkeys had the TTR Ile122 allele, which is well known as a frequent mutation-causing human TTR amyloidosis. Furthermore, we generated recombinant monkey TTRs and determined that the vervet monkey TTR had lower tetrameric stability and formed more amyloid fibrils than did cynomolgus monkey TTR, which had the Val122 allele. We thus propose that the Ile122 allele has an important role in TTR amyloidosis in the aged vervet monkey and that this monkey can serve as a valid pathological model of the human disease. Finally, from the viewpoint of molecular evolution of TTR in primates, we determined that human TTR mutations causing the leptomeningeal phenotype of TTR amyloidosis tended to occur in amino acid residues that showed no diversity throughout primate evolution. Those findings may be valuable for understanding the genotype-phenotype correlation in this inherited human disease.
تدمد: 1530-0307
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::82f139ee5662c88c18209e71adb833ab
https://pubmed.ncbi.nlm.nih.gov/22184092
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....82f139ee5662c88c18209e71adb833ab
قاعدة البيانات: OpenAIRE