A general framework of kernel-driven modeling in the thermal infrared domain

التفاصيل البيبلوغرافية
العنوان: A general framework of kernel-driven modeling in the thermal infrared domain
المؤلفون: Biao Cao, Jean-Louis Roujean, Tian Hu, Hua Li, Yongming Du, Qinhuo Liu, Zunjian Bian, Jean-Pierre Lagouarde, Qing Xiao, Huaguo Huang, Boxiong Qin, Jean-Philippe Gastellu-Etchegorry, Xueting Ran
المساهمون: Aerospace Information Research Institute, Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
المصدر: Remote Sensing of Environment
Remote Sensing of Environment, Elsevier, 2021, 252, pp.1-26. ⟨10.1016/j.rse.2020.112157⟩
Remote Sensing of Environment, 2021, 252, pp.1-26. ⟨10.1016/j.rse.2020.112157⟩
بيانات النشر: HAL CCSD, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Physical model, 010504 meteorology & atmospheric sciences, Mean squared error, Kernel-driven modeling, 0208 environmental biotechnology, Soil Science, Geology, 02 engineering and technology, 01 natural sciences, 020801 environmental engineering, Atmospheric radiative transfer codes, Thermal radiation, [SDU]Sciences of the Universe [physics], Brightness temperature, Directional brightness temperature, Radiative transfer, Computers in Earth Sciences, Linear combination, Zenith, Land surface temperature, 0105 earth and related environmental sciences, Mathematics, Remote sensing, Physically based framework
الوصف: International audience; Radiometric measurements in the Thermal Infrared (TIR) domain exhibit an angular variation over most surface types, known as the Thermal Radiation Directionality (TRD) phenomenon. A primary objective of the ongoing development of TRD physical models is to perform a correction of the angular effects to obtain comparable land surface temperature products. In practice, it is advised to handle only the models having a limited number of input parameters for the purpose of operational applications. The use of semi-empirical kernel-driven models (KDMs) appears to be a good tradeoff between physical accuracy and computational efficiency as it was already demonstrated through a broad usage in the optical domain. It remains that the existing state-of-the-art 3-parameter TIR KDMs (RossThick-LiSparseR, LiStrahlerFriedl-LiDenseR, Vinnikov, and RoujeanLagouarde) underestimate the hotspot phenomenon, especially for continuous canopies marked by a narrow peak. In this study, a new general framework of TIR kernel-driven modeling is proposed to overcome such issue. It is a linear combination of three kernels (including a base shape kernel, a hotspot kernel with adjustable width and an isotropic kernel) with the ability to simulate the bowl, dome and bell shapes in the solar principal plane. Four specific 4-parameter models (Vinnikov-RoujeanLagouarde, LiStrahlerFriedl-RoujeanLagouarde, Vinnikov-Chen, and LiStrahlerFriedl-Chen, named “base shape kernel - hotspot kernel”) within the new framework were studied to assess their abilities to mimic the patterns of the directional brightness temperature for both continuous and discrete vegetation canopies. These four 4-parameter KDMs and four 3-parameter KDMs were comprehensively evaluated with 306 groups of simulated multi-angle datasets generated by a modernized analytical 4-stream radiative transfer model based on the Scattering by Arbitrarily Inclined Leaves (4SAIL), and a Discrete Anisotropic Radiative Transfer (DART) model considering different solar zenith angles (SZA), canopy architectures and component temperatures, and 2 groups of airborne measured multi-angle datasets over continuous maize and discrete pine forest. Results show that the four 4-parameter KDMs behave better than the four existing 3-parameter KDMs over continuous canopies (e.g. R2 increases from 0.661~0.970 to 0.940~0.997 and RMSE decreases from 0.17~0.71 to 0.07~0.16 when SZA = 30°) and discrete canopies (e.g. R2 increases from 0.791~0.989 to 0.976~0.996 and RMSE decreases from 0.10~0.84 to 0.08~0.21 when SZA = 30°). The new general framework with four parameters (three kernel coefficients and an adjustable hotspot width) improves the fitting ability significantly, compared to the four existing three-parameter KDMs, given the addition of one more degree of freedom. Results show that the coefficients of the base shape kernel, hotspot kernel and isotropic kernel are related to the temperature difference between leaf and background, temperature difference between sunlit component and shaded component, and the nadir brightness temperature, respectively. However, the estimated hotspot width depends on vegetation structure. The new kernel-driven modeling framework has the potential to be a tool for angular correction of multi-angle satellite observations and angular optimization of future multi-angle TIR sensors.
اللغة: English
تدمد: 0034-4257
1879-0704
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::915516aac336daa84bd4cd45204c4a62
https://hal-insu.archives-ouvertes.fr/insu-03040764/file/1-s2.0-S0034425720305307-main.pdf
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....915516aac336daa84bd4cd45204c4a62
قاعدة البيانات: OpenAIRE