Function of the pseudo phosphotransfer proteins has diverged between rice and Arabidopsis

التفاصيل البيبلوغرافية
العنوان: Function of the pseudo phosphotransfer proteins has diverged between rice and Arabidopsis
المؤلفون: Kevin Beaver, Samantha Louise Boeshore, Wanqi Liang, Jan Šimura, G. Eric Schaller, Charlie Hodgens, Karin Ljung, Joseph J. Kieber, Kartika Sari, Ian D. Kerr, Emily J. Tallerday, Dawei Xu, Christian A. Burr, Allison Melling, Rahul Bhosale, John Vaughan-Hirsch, Anthony Bishopp
المصدر: The Plant Journal. 106:159-173
بيانات النشر: Wiley, 2021.
سنة النشر: 2021
مصطلحات موضوعية: 0106 biological sciences, 0301 basic medicine, Cytokinins, component signaling, Mutant, Arabidopsis, Oryza sativa, Plant Science, Biology, 01 natural sciences, Genome, cytokinin, 03 medical and health sciences, chemistry.chemical_compound, Plant Growth Regulators, Gene Expression Regulation, Plant, Genetics, Agricultural Science, Gene, Plant Proteins, Science & Technology, Arabidopsis Proteins, Plant Sciences, fungi, Histidine kinase, food and beverages, Oryza, Cell Biology, biology.organism_classification, 030104 developmental biology, chemistry, two‐, Cytokinin, plant hormones, Life Sciences & Biomedicine, Function (biology), 010606 plant biology & botany
الوصف: The phytohormone cytokinin plays a significant role in nearly all aspects of plant growth and development. Cytokinin signaling has primarily been studied in the dicot model Arabidopsis, with relatively little work done in monocots, which include rice (Oryza sativa) and other cereals of agronomic importance. The cytokinin signaling pathway is a phosphorelay comprised of the histidine kinase receptors, the authentic histidine phosphotransfer proteins (AHPs) and type-B response regulators (RRs). Two negative regulators of cytokinin signaling have been identified: the type-A RRs, which are cytokinin primary response genes, and the pseudo histidine phosphotransfer proteins (PHPs), which lack the His residue required for phosphorelay. Here, we describe the role of the rice PHP genes. Phylogenic analysis indicates that the PHPs are generally first found in the genomes of gymnosperms and that they arose independently in monocots and dicots. Consistent with this, the three rice PHPs fail to complement an Arabidopsis php mutant (aphp1/ahp6). Disruption of the three rice PHPs results in a molecular phenotype consistent with these elements acting as negative regulators of cytokinin signaling, including the induction of a number of type-A RR and cytokinin oxidase genes. The triple php mutant affects multiple aspects of rice growth and development, including shoot morphology, panicle architecture, and seed fill. In contrast to Arabidopsis, disruption of the rice PHPs does not affect root vascular patterning, suggesting that while many aspects of key signaling networks are conserved between monocots and dicots, the roles of at least some cytokinin signaling elements are distinct. ispartof: PLANT JOURNAL vol:106 issue:1 pages:159-173 ispartof: location:England status: published
وصف الملف: application/pdf; Print-Electronic
تدمد: 1365-313X
0960-7412
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::99a9f9ec44bc07ec7e3700d66f53b369
https://doi.org/10.1111/tpj.15156
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....99a9f9ec44bc07ec7e3700d66f53b369
قاعدة البيانات: OpenAIRE