Author Correction: The Transcriptomic Signature Of Disease Development And Progression Of Nonalcoholic Fatty Liver Disease

التفاصيل البيبلوغرافية
العنوان: Author Correction: The Transcriptomic Signature Of Disease Development And Progression Of Nonalcoholic Fatty Liver Disease
المؤلفون: Andrea L. Webber, Kristian K. Jensen, Arun J. Sanyal, Robert Vincent, Alexei A. Podtelezhnikov, Bubu A. Banini, Divya P. Kumar, Hae-Ki Min, Keith Q. Tanis, Sophie C. Cazanave, Prasanna K. Santhekadur, Abdul M. Oseini, Faridoddin Mirshahi, Liangsu Wang, Adolfo G Mauro, Mulugeta Seneshaw, Pierre Bedossa
المصدر: Scientific Reports
Scientific Reports, Vol 10, Iss 1, Pp 1-1 (2020)
بيانات النشر: Nature Publishing Group UK, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Liver Cirrhosis, Male, Multidisciplinary, business.industry, Gene Expression Profiling, lcsh:R, lcsh:Medicine, Disease, Bioinformatics, medicine.disease, Transcriptome, Mice, Inbred C57BL, Mice, Non-alcoholic Fatty Liver Disease, Nonalcoholic fatty liver disease, medicine, Disease Progression, Animals, lcsh:Q, business, lcsh:Science, Author Correction, Signal Transduction
الوصف: A longitudinal molecular model of the development and progression of nonalcoholic fatty liver disease (NAFLD) over time is lacking. We have recently validated a high fat/sugar water-induced animal (an isogenic strain of C57BL/6 J:129S1/SvImJ mice) model of NAFLD that closely mimics most aspects of human disease. The hepatic transcriptome of such mice with fatty liver (8 weeks), steatohepatitis with early fibrosis (16-24 weeks) and advanced fibrosis (52 weeks) after initiation of the diet was evaluated and compared to mice on chow diet. Fatty liver development was associated with transcriptional activation of lipogenesis, FXR-RXR, PPAR-α mediated lipid oxidation and oxidative stress pathways. With progression to steatohepatitis, metabolic pathway activation persisted with additional activation of IL-1/inhibition of RXR, granulocyte diapedesis/adhesion, Fc macrophage activation, prothrombin activation and hepatic stellate cell activation. Progression to advanced fibrosis was associated with dampening of metabolic, oxidative stress and cell stress related pathway activation but with further Fc macrophage activation, cell death and turnover and activation of cancer-related networks. The molecular progression of NAFLD involves a metabolic perturbation which triggers subsequent cell stress and inflammation driving cell death and turnover. Over time, inflammation and fibrogenic pathways become dominant while in advanced disease an inflammatory-oncogenic profile dominates.
اللغة: English
تدمد: 2045-2322
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a80a8ccf95afc52cda74aa8366fb716
http://europepmc.org/articles/PMC7225167
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....9a80a8ccf95afc52cda74aa8366fb716
قاعدة البيانات: OpenAIRE