Bone Marrow Progenitor Cells Repair Rat Hepatic Sinusoidal Endothelial Cells After Liver Injury

التفاصيل البيبلوغرافية
العنوان: Bone Marrow Progenitor Cells Repair Rat Hepatic Sinusoidal Endothelial Cells After Liver Injury
المؤلفون: C.K. Hill, Rula Harb, Laurie D. DeLeve, Gary Kanel, Yumei Guo, Carolyn Lutzko, Guanhua Xie, Xiangdong Wang
المصدر: Gastroenterology. 137:704-712
بيانات النشر: Elsevier BV, 2009.
سنة النشر: 2009
مصطلحات موضوعية: Male, Pathology, medicine.medical_specialty, Hepatic veno-occlusive disease, Sialic Acid Binding Ig-like Lectin 3, Hepatic Veno-Occlusive Disease, Antigens, Differentiation, Myelomonocytic, Biology, Sensitivity and Specificity, Article, Rats, Sprague-Dawley, Random Allocation, Antigens, CD, medicine, Animals, Progenitor cell, Cells, Cultured, Bone Marrow Transplantation, Probability, Analysis of Variance, Hepatology, Stem Cells, Gastroenterology, Endothelial Cells, Flow Cytometry, medicine.disease, Immunohistochemistry, Liver regeneration, Liver Regeneration, Rats, Endothelial stem cell, Disease Models, Animal, medicine.anatomical_structure, Bone marrow suppression, Female, Bone marrow, Stem cell, Biomarkers, Whole Bone Marrow
الوصف: Background & Aims Damage to hepatic sinusoidal endothelial cells (SECs) initiates sinusoidal obstruction syndrome (SOS), which is most commonly a consequence of myeloablative chemoirradiation or ingestion of pyrrolizidine alkaloids such as monocrotaline (Mct). This study examines whether SECs are of bone marrow origin, whether bone marrow repair can be a determinant of severity of liver injury, and whether treatment with progenitor cells is beneficial. Methods Mct-treated female rats received infusion of male whole bone marrow or CD133 + cells at the peak of sinusoidal injury. The Y chromosome was identified in isolated SECs by fluorescent in situ hybridization. Bone marrow suppression was induced by irradiation of both lower extremities with shielding of the abdomen. Results SECs in uninjured liver have both hematopoietic (CD45, CD33) and endothelial (CD31) markers. After Mct-induced SOS, infusion of bone marrow–derived CD133 + progenitor cells replaces more than one quarter of SECs. All CD133 + cells recovered from the SEC fraction after injury are CD45 + . CD133 + /CD45 + progenitors also repaired central vein endothelium. Mct suppresses CD133 + /CD45 + progenitors in bone marrow by 50% and in the circulation by 97%. Irradiation-induced bone marrow suppression elicited SOS from a subtoxic dose of Mct, whereas infusion of bone marrow during the necrotic phase of SOS nearly eradicates histologic features of SOS. Conclusions SECs have both hematopoietic and endothelial markers. Bone marrow–derived CD133 + /CD45 + progenitors replace SECs and central vein endothelial cells after injury. Toxicity to bone marrow progenitors impairs repair and contributes to the pathogenesis of SOS, whereas timely infusion of bone marrow has therapeutic benefit.
تدمد: 0016-5085
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a02ebb66011bc2029703fefbdf82003b
https://doi.org/10.1053/j.gastro.2009.05.009
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....a02ebb66011bc2029703fefbdf82003b
قاعدة البيانات: OpenAIRE