Pulmonary hypertension is attenuated and ventilation-perfusion matching is maintained during chronic hypoxia in deer mice native to high altitude

التفاصيل البيبلوغرافية
العنوان: Pulmonary hypertension is attenuated and ventilation-perfusion matching is maintained during chronic hypoxia in deer mice native to high altitude
المؤلفون: Oliver H. Wearing, Graham R. Scott, Claire M. West, Rod G. Rhem
المصدر: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 320:R800-R811
بيانات النشر: American Physiological Society, 2021.
سنة النشر: 2021
مصطلحات موضوعية: 0106 biological sciences, 0301 basic medicine, medicine.medical_specialty, Physiology, Acclimatization, Hypertension, Pulmonary, 010603 evolutionary biology, 01 natural sciences, Muscle hypertrophy, Mice, 03 medical and health sciences, Oxygen Consumption, Peromyscus, Physiology (medical), Internal medicine, Animals, Medicine, Deer mouse, medicine.vector_of_disease, Hypoxia, Lung, business.industry, Hypoxia (medical), Effects of high altitude on humans, medicine.disease, Pulmonary edema, Pulmonary hypertension, Oxygen, Perfusion, 030104 developmental biology, Blood pressure, medicine.anatomical_structure, Ventricle, Cardiology, medicine.symptom, business
الوصف: Hypoxia at high altitude can constrain metabolism and performance and can elicit physiological adjustments that are deleterious to health and fitness. Hypoxic pulmonary hypertension is a particularly serious and maladaptive response to chronic hypoxia, which results from vasoconstriction and pathological remodeling of pulmonary arteries, and can lead to pulmonary edema and right ventricle hypertrophy. We investigated whether deer mice ( Peromyscus maniculatus) native to high altitude have attenuated this maladaptive response to chronic hypoxia and whether evolved changes or hypoxia-induced plasticity in pulmonary vasculature might impact ventilation-perfusion (V-Q) matching in chronic hypoxia. Deer mouse populations from both high and low altitudes were born and raised to adulthood in captivity at sea level, and various aspects of lung function were measured before and after exposure to chronic hypoxia (12 kPa O2, simulating the O2 pressure at 4,300 m) for 6–8 wk. In lowlanders, chronic hypoxia increased right ventricle systolic pressure (RVSP) from 14 to 19 mmHg ( P = 0.001), in association with thickening of smooth muscle in pulmonary arteries and right ventricle hypertrophy. Chronic hypoxia also impaired V-Q matching in lowlanders (measured at rest using SPECT-CT imaging), as reflected by increased log SD of the perfusion distribution (log SDQ) from 0.55 to 0.86 ( P = 0.031). In highlanders, chronic hypoxia had attenuated effects on RVSP and no effects on smooth muscle thickness, right ventricle mass, or V-Q matching. Therefore, evolved changes in lung function help attenuate maladaptive plasticity and contribute to hypoxia tolerance in high-altitude deer mice.
تدمد: 1522-1490
0363-6119
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5cb2c73fe7bbb4adb7861c5c559b323
https://doi.org/10.1152/ajpregu.00282.2020
رقم الأكسشن: edsair.doi.dedup.....a5cb2c73fe7bbb4adb7861c5c559b323
قاعدة البيانات: OpenAIRE