Carboxylic acid bioisosteres in medicinal chemistry : synthesis and properties

التفاصيل البيبلوغرافية
العنوان: Carboxylic acid bioisosteres in medicinal chemistry : synthesis and properties
المؤلفون: Kato Bredael, Silke Geurs, Dorien Clarisse, Karolien De Bosscher, Matthias D’hooghe
المصدر: JOURNAL OF CHEMISTRY
سنة النشر: 2022
مصطلحات موضوعية: TETRAZOLE FORMATION, II RECEPTOR ANTAGONISTS, General Chemistry, 5-SUBSTITUTED 1H-TETRAZOLES, ONE-POT SYNTHESIS, Chemistry, 5-OXADIAZOLYL MOIETY, EFFICIENT SYNTHESIS, SULFONYL FLUORIDES, TRIFLUOROMETHYL KETONES, DRUG DESIGN, HYDROXY-1, BIOLOGICAL-ACTIVITY
الوصف: Lead optimization represents the tedious process of fine-tuning lead compounds from biologically active hits to suitable drug candidates for clinical trials. By chemically modifying a hit structure, an improved compound can be obtained in terms of activity, selectivity, and pharmacokinetic ADME (absorption, distribution, metabolism, and excretion) properties. The carboxylic acid moiety is known to be a crucial functionality in many pharmaceutically active compounds. Despite its common use as a key functionality in drugs, its presence in a lead molecule is often associated with poor pharmacokinetic properties and toxicity. In this literature overview, we discuss how the shortcomings of a carboxylic acid can be circumvented by replacing this functionality with bioisosteres. In this way, the positive aspects of this moiety, such as its activity, for example, by virtue of its capacity to form hydrogen bonds, can be maintained or even improved. To that end, we provide an overview of the most promising carboxylic acid bioisosteres and discuss a selection of synthetic routes towards the main functionalities.
وصف الملف: application/pdf
اللغة: English
تدمد: 2090-9063
2090-9071
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a7e8eb951e227aa7e63ea6535ebf6bbf
https://hdl.handle.net/1854/LU-8753825
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....a7e8eb951e227aa7e63ea6535ebf6bbf
قاعدة البيانات: OpenAIRE