Hydrodynamic influence on reservoir sustainability in semi-arid climate: A physicochemical and environmental isotopic study

التفاصيل البيبلوغرافية
العنوان: Hydrodynamic influence on reservoir sustainability in semi-arid climate: A physicochemical and environmental isotopic study
المؤلفون: Zeinab Saad, Nabil Amacha, Lei Chou, Véronique Kazpard, Antoine G. El Samrani, Rawaa Ammar
المصدر: Journal of Environmental Management. 197:571-581
بيانات النشر: Elsevier BV, 2017.
سنة النشر: 2017
مصطلحات موضوعية: Hydrology, Water mass, Biogeochemical cycle, Environmental Engineering, Water table, 0208 environmental biotechnology, 02 engineering and technology, General Medicine, Management, Monitoring, Policy and Law, 020801 environmental engineering, Rivers, Hydrodynamics, Meteoric water, Water quality, Water cycle, Groundwater, Waste Management and Disposal, Surface water, Geology, Environmental Monitoring
الوصف: Water scarcity and increasing water demand require the development of water management plans such as establishing artificial lakes and dams. Plans to meet water needs are faced by uprising challenges to improve water quality and to ensure the sustainability of hydro-projects. Environmental isotopes coupled to water physicochemical characteristics were investigated over a biennial cycle to assess both geomorphological and environmental impacts on the water quality of a reservoir situated in an intensively used agricultural watershed under a Mediterranean semi-arid climate. The particularity of the semi-arid climate and the diverse topography generate a continental and orographic rain effect on the isotopic composition of precipitation and the water recharged sources. The studied reservoir responds quickly to land-use activities and climatic changes as reflected by temporal and spatial variations of water chemistry and isotopic composition. Increasing changes in precipitation rate and dry periods significantly modified the water isotopic composition in the reservoir. During the first year, hydrogen (δD) and oxygen (δ 18 O) isotopes are depleted by 6 and 2‰ between dry and wet season, respectively. While a shift of −2‰ for δD and −1‰ for δ 18 O was detected during the second annual cycle. Environmental isotopic compositions demonstrate for the first time the occurrence of groundwater inflow to the central (Cz) and dam (Dz) zones of the Qaraaoun reservoir. The Cz and Dz can be considered as open water bodies subjected to dilution by groundwater inflow, which induces vertical mixing and reverse isotopic stratification of the water column. In the contrary, the river mouth zone acts as a closed system without groundwater intrusion, where heavy water accumulates and may act as a sink for contaminants during dry season. Groundwater influx acts as a dilution factor that renews the hypolimnion, and minimizes the perturbations induced by both internal biogeochemical reactions and external hydrological variations. Attention should be devoted to the hydrogeological location of planned reservoirs, which should take into account the vicinity of shallow water table to insure good water quality and water sustainability.
تدمد: 0301-4797
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b5f9306806b833f19664bdd811c33efc
https://doi.org/10.1016/j.jenvman.2017.04.030
حقوق: CLOSED
رقم الأكسشن: edsair.doi.dedup.....b5f9306806b833f19664bdd811c33efc
قاعدة البيانات: OpenAIRE