Familial Alzheimer’s Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis

التفاصيل البيبلوغرافية
العنوان: Familial Alzheimer’s Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis
المؤلفون: Argyro Alatza, Jackie M. Casey, John Hardy, Lachlan Harris, Caoimhe Kerins, Nick C. Fox, Henrik Zetterberg, Tammaryn Lashley, Selina Wray, Nanet Willumsen, Georgie Lines, Charles Arber, Natalie S. Ryan, Anika K. Mueller, Christopher Lovejoy
المصدر: Cell Reports, Vol 34, Iss 2, Pp 108615-(2021)
Cell Reports
بيانات النشر: Elsevier, 2021.
سنة النشر: 2021
مصطلحات موضوعية: 0301 basic medicine, Premature aging, hippocampus, organoid, Induced Pluripotent Stem Cells, Notch signaling pathway, γ-secretase, Biology, Article, General Biochemistry, Genetics and Molecular Biology, Presenilin, 03 medical and health sciences, 0302 clinical medicine, Neural Stem Cells, Alzheimer Disease, PSEN2, Presenilin-1, PSEN1, Humans, lcsh:QH301-705.5, Cells, Cultured, iPSC, Receptors, Notch, Neurogenesis, Neural stem cell, Cell biology, NOTCH, neurogenesis, 030104 developmental biology, lcsh:Biology (General), Mutation, Amyloid Precursor Protein Secretases, Alzheimer’s disease, 030217 neurology & neurosurgery, Cerebral organoid
الوصف: Summary Mutations in presenilin 1 (PSEN1) or presenilin 2 (PSEN2), the catalytic subunit of γ-secretase, cause familial Alzheimer’s disease (fAD). We hypothesized that mutations in PSEN1 reduce Notch signaling and alter neurogenesis. Expression data from developmental and adult neurogenesis show relative enrichment of Notch and γ-secretase expression in stem cells, whereas expression of APP and β-secretase is enriched in neurons. We observe premature neurogenesis in fAD iPSCs harboring PSEN1 mutations using two orthogonal systems: cortical differentiation in 2D and cerebral organoid generation in 3D. This is partly driven by reduced Notch signaling. We extend these studies to adult hippocampal neurogenesis in mutation-confirmed postmortem tissue. fAD cases show mutation-specific effects and a trend toward reduced abundance of newborn neurons, supporting a premature aging phenotype. Altogether, these results support altered neurogenesis as a result of fAD mutations and suggest that neural stem cell biology is affected in aging and disease.
Graphical Abstract
Highlights • In neurogenesis, PSEN1 expression is enriched in progenitors, as it is for APP in neurons • Inhibiting β-secretase has little effect on neurogenesis, contrary to γ-secretase • Familial Alzheimer’s disease mutations in PSEN1 cause premature neurogenesis • Trend toward fewer newborn neurons in familial AD postmortem hippocampi
Arber et al. employ human iPSC neurogenesis to model adult hippocampal neurogenesis, investigating familial Alzheimer’s disease (fAD) mutations. In contrast to APP, PSEN1 and γ-secretase components are enriched in neural progenitors and mutations drive premature neurogenesis. Postmortem fAD hippocampi show corresponding trends toward altered neurogenesis.
اللغة: English
تدمد: 2211-1247
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b724910ae19f79d7ce1933deb329b1fd
http://www.sciencedirect.com/science/article/pii/S2211124720316041
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....b724910ae19f79d7ce1933deb329b1fd
قاعدة البيانات: OpenAIRE