Hemodynamics-driven mathematical model of third heart sound generation

التفاصيل البيبلوغرافية
العنوان: Hemodynamics-driven mathematical model of third heart sound generation
المؤلفون: Shahmohammadi, M., Huberts, W., Luo, H.X., Westphal, P., Cornelussen, R.N., Prinzen, F.W., Delhaas, T.
المساهمون: Biomedische Technologie, RS: Carim - H07 Cardiovascular System Dynamics, RS: Carim - H01 Clinical atrial fibrillation, Fysiologie, RS: Carim - H06 Electro mechanics
المصدر: Frontiers in physiology, 13:847164. Frontiers Media S.A.
بيانات النشر: Frontiers Media SA, 2022.
سنة النشر: 2022
مصطلحات موضوعية: mathematical modelling (medical), MECHANISM, Physiology, DISAPPEARANCE, Physiology (medical), heart sound (HS), FAILURE, GENESIS, cardiac vibration, DIAGNOSIS, pathological heart sound, third heart sound
الوصف: The proto-diastolic third heart sound (S3) is observed in various hemodynamic conditions in both normal and diseased hearts. We propose a novel, one-degree of freedom mathematical model of mechanical vibrations of heart and blood that generates the third heart sound, implemented in a real-time model of the cardiovascular system (CircAdapt). To examine model functionality, S3 simulations were performed for conditions mimicking the normal heart as well as heart failure with preserved ejection fraction (HFpEF), atrioventricular valve regurgitation (AVR), atrioventricular valve stenosis (AVS) and septal shunts (SS). Simulated S3 showed both qualitative and quantitative agreements with measured S3 in terms of morphology, frequency, and timing. It was shown that ventricular mass, ventricular viscoelastic properties as well as inflow momentum play a key role in the generation of S3. The model indicated that irrespective of cardiac conditions, S3 vibrations are always generated, in both the left and right sides of the heart, albeit at different levels of audibility. S3 intensities increased in HFpEF, AVR and SS, but the changes of acoustic S3 features in AVS were not significant, as compared with the reference simulation. S3 loudness in all simulated conditions was proportional to the level of cardiac output and severity of cardiac conditions. In conclusion, our hemodynamics-driven mathematical model provides a fast and realistic simulation of S3 under various conditions which may be helpful to find new indicators for diagnosis and prognosis of cardiac diseases.
تدمد: 1664-042X
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b83d0eefdeb554cd2f9cab162f3bfa4a
https://doi.org/10.3389/fphys.2022.847164
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....b83d0eefdeb554cd2f9cab162f3bfa4a
قاعدة البيانات: OpenAIRE