Investigations of the stability of etched or platinized p-InP(100) photocathodes for solar-driven hydrogen evolution in acidic or alkaline aqueous electrolytes

التفاصيل البيبلوغرافية
العنوان: Investigations of the stability of etched or platinized p-InP(100) photocathodes for solar-driven hydrogen evolution in acidic or alkaline aqueous electrolytes
المؤلفون: Nathan S. Lewis, Bruce S. Brunschwig, Weilai Yu, Ivan A. Moreno-Hernandez, Matthias H. Richter, Ethan Simonoff, Carlos G. Read, Pakpoom Buabthong
بيانات النشر: Royal Society of Chemistry, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Materials science, Renewable Energy, Sustainability and the Environment, Inorganic chemistry, Electrolyte, Electrochemistry, Pollution, Corrosion, Nuclear Energy and Engineering, X-ray photoelectron spectroscopy, Electrode, Environmental Chemistry, Reversible hydrogen electrode, Dissolution, Stoichiometry
الوصف: The stability of p-InP photocathodes performing the hydrogen-evolution reaction (HER) has been evaluated in contact with either 1.0 M H₂SO₄ (aq) or 1.0 M KOH(aq), with a focus on identifying corrosion mechanisms. Stability for the solar-driven HER was evaluated using p-InP electrodes that were either etched or coated with an electrodeposited Pt catalyst (p-InP/Pt). Variables such as trace O₂ were systematically controlled during the measurements. Changes in surface characteristics after exposure to electrochemical conditions as well as electrode dissolution processes were monitored using X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). In either H₂SO₄ or KOH, etched p-InP photoelectrodes corroded cathodically under illumination, forming metallic In⁰ at the electrode surface. In contrast, electrodeposition of Pt kinetically stabilized illuminated p-InP photocathodes in both H₂SO₄ and KOH by inhibiting the cathodic corrosion pathway. Notably, when held at 0 V vs. the reversible hydrogen electrode (RHE) in 1.0 M H₂SO₄ (aq), p-InP/Pt exhibited a stable current density (J) of ∼−18 mA cm⁻² for >285 h under simulated 1 Sun illumination. The long-term current density vs. potential (J–E) behavior at pH 0 and pH 14 of p-InP/Pt photocathodes correlated with changes in the surface chemistry as well as the dissolution of p-InP. In acidic media, the J–E behavior of p-InP/Pt photocathodes remained nearly constant with time, but the surface of a p-InP/Pt electrodes gradually turned P-rich via a slow and continuous leaching of In ions. In alkaline electrolyte, the surface of p-InP/Pt electrodes was passivated by formation of an InO_x layer that exhibited negligible dissolution but led to a substantial degradation in the J–E characteristics. Consequently, changes in the catalytic kinetics and surface stoichiometry are both important considerations for determining the corrosion chemistry and the long-term operational stability of InP photoelectrodes.
وصف الملف: application/pdf
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d16f20a1bb9c703ac22b30bc25918b11
https://resolver.caltech.edu/CaltechAUTHORS:20211117-163656680
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....d16f20a1bb9c703ac22b30bc25918b11
قاعدة البيانات: OpenAIRE