Degradation of Extracellular NAD+ Intermediates in Cultures of Human HEK293 Cells

التفاصيل البيبلوغرافية
العنوان: Degradation of Extracellular NAD+ Intermediates in Cultures of Human HEK293 Cells
المؤلفون: Andrey Nikiforov, Mikhail Khodorkovskiy, Alexander Yakimov, Veronika Kulikova, L. V. Solovjeva, Kirill Nerinovski, Andrey Kropotov, Maria Svetlova, Marie E. Migaud, Konstantin A. Shabalin, Mathias Ziegler
المصدر: Metabolites
Volume 9
Issue 12
بيانات النشر: MDPI, 2019.
سنة النشر: 2019
مصطلحات موضوعية: 0301 basic medicine, NAD metabolism, 030102 biochemistry & molecular biology, Nicotinamide, Endocrinology, Diabetes and Metabolism, extracellular NAD+ intermediates, human cells, Metabolism, Nicotinamide adenine dinucleotide, Biochemistry, Article, 03 medical and health sciences, chemistry.chemical_compound, 030104 developmental biology, NMR spectroscopy, chemistry, Nicotinamide riboside, Extracellular, NAD+ kinase, Molecular Biology, Intracellular, Nicotinamide mononucleotide
الوصف: Nicotinamide adenine dinucleotide (NAD) is an essential redox carrier, whereas its degradation is a key element of important signaling pathways. Human cells replenish their NAD contents through NAD biosynthesis from extracellular precursors. These precursors encompass bases nicotinamide (Nam) and nicotinic acid and their corresponding nucleosides nicotinamide riboside (NR) and nicotinic acid riboside (NAR), now collectively referred to as vitamin B3. In addition, extracellular NAD+ and nicotinamide mononucleotide (NMN), and potentially their deamidated counterparts, nicotinic acid adenine dinucleotide (NAAD) and nicotinic acid mononucleotide (NAMN), may serve as precursors of intracellular NAD. However, it is still debated whether nucleotides enter cells directly or whether they are converted to nucleosides and bases prior to uptake into cells. Here, we studied the metabolism of extracellular NAD+ and its derivatives in human HEK293 cells using normal and serum-free culture medium. Using medium containing 10% fetal bovine serum (FBS), mono- and dinucleotides were degraded to the corresponding nucleosides. In turn, the nucleosides were cleaved to their corresponding bases. Degradation was also observed in culture medium alone, in the absence of cells, indicating that FBS contains enzymatic activities which degrade NAD+ intermediates. Surprisingly, NR was also rather efficiently hydrolyzed to Nam in the absence of FBS. When cultivated in serum-free medium, HEK293 cells efficiently cleaved NAD+ and NAAD to NMN and NAMN. NMN exhibited rather high stability in cell culture, but was partially metabolized to NR. Using pharmacological inhibitors of plasma membrane transporters, we also showed that extracellular cleavage of NAD+ and NMN to NR is a prerequisite for using these nucleotides to maintain intracellular NAD contents. We also present evidence that, besides spontaneous hydrolysis, NR is intensively metabolized in cell culture by intracellular conversion to Nam. Our results demonstrate that both the cultured cells and the culture medium mediate a rather active conversion of NAD+ intermediates. Consequently, in studies of precursor supplementation and uptake, the culture conditions need to be carefully defined.
وصف الملف: application/pdf
اللغة: English
تدمد: 2218-1989
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d91361bfccb9bf89f859b20dfae714d1
http://europepmc.org/articles/PMC6950141
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....d91361bfccb9bf89f859b20dfae714d1
قاعدة البيانات: OpenAIRE