AGC1/2, the mitochondrial aspartate-glutamate carriers

التفاصيل البيبلوغرافية
العنوان: AGC1/2, the mitochondrial aspartate-glutamate carriers
المؤلفون: Rodrigue Rossignol, Giuseppe Punzi, A. De Grassi, Ciro Leonardo Pierri, Didier Lacombe, Nivea Dias Amoedo, Emilie Obre
المصدر: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1863:2394-2412
بيانات النشر: Elsevier BV, 2016.
سنة النشر: 2016
مصطلحات موضوعية: Models, Molecular, 0301 basic medicine, Protein Conformation, Malates, Excitotoxicity, Biological Transport, Active, Glutamic Acid, Organic Anion Transporters, Malate-aspartate shuttle, Mitochondrion, Biology, medicine.disease_cause, Mitochondrial Membrane Transport Proteins, Mice, 03 medical and health sciences, chemistry.chemical_compound, Consensus Sequence, medicine, Animals, Humans, Amino Acid Sequence, Molecular Biology, Calcium signaling, Aspartic Acid, Sequence Homology, Amino Acid, Calcium-Binding Proteins, Glutamate receptor, Cell Biology, Glutathione, NAD, Mitochondria, Neoplasm Proteins, Cytosol, 030104 developmental biology, chemistry, Biochemistry, Organ Specificity, Mitochondrial matrix, Cattle, Oxidation-Reduction, Sequence Alignment
الوصف: In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
تدمد: 0167-4889
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::da65fa6238dd373684fefd5ca244606c
https://doi.org/10.1016/j.bbamcr.2016.04.011
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....da65fa6238dd373684fefd5ca244606c
قاعدة البيانات: OpenAIRE