Magnetic resonance force detection using a membrane resonator

التفاصيل البيبلوغرافية
العنوان: Magnetic resonance force detection using a membrane resonator
المؤلفون: W. Ruchotzke, A. Belding, Jeremy Cardellino, Nicolas Scozzaro, E. C. Blomberg, P. C. Hammel, Vidya P. Bhallamudi, Denis V. Pelekhov, Brendan McCullian
المصدر: Journal of magnetic resonance (San Diego, Calif. : 1997). 271
سنة النشر: 2016
مصطلحات موضوعية: Nuclear and High Energy Physics, Materials science, Biophysics, Magnetic resonance force microscopy, FOS: Physical sciences, 02 engineering and technology, 01 natural sciences, Biochemistry, Resonator, chemistry.chemical_compound, Nuclear magnetic resonance, Quality (physics), 0103 physical sciences, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Sensitivity (control systems), 010306 general physics, Image resolution, Condensed Matter - Mesoscale and Nanoscale Physics, business.industry, Detector, 021001 nanoscience & nanotechnology, Condensed Matter Physics, Membrane, Silicon nitride, chemistry, Optoelectronics, 0210 nano-technology, business
الوصف: The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiN$_x$) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor $Q\sim10^6$ combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiN$_x$ membrane as a force detector. The demonstrated force sensitivity at 300 K is 4 fN/$\sqrt{\mathrm{Hz}}$, indicating a potential low temperature (4 K) sensitivity of 25 aN/$\sqrt{\mathrm{Hz}}$. Given their sensitivity, robust construction, large surface area and low cost, SiN$_x$ membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional approaches.
تدمد: 1096-0856
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db943b7189943c908e52edd2886659dd
https://pubmed.ncbi.nlm.nih.gov/27522542
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....db943b7189943c908e52edd2886659dd
قاعدة البيانات: OpenAIRE