Direct Observation of the Dynamics of Ylide Solvation by Hydrogen-bond Donors Using Time-Resolved Infrared Spectroscopy

التفاصيل البيبلوغرافية
العنوان: Direct Observation of the Dynamics of Ylide Solvation by Hydrogen-bond Donors Using Time-Resolved Infrared Spectroscopy
المؤلفون: Andrew Orr-Ewing, Ryan Phelps
المصدر: Phelps, R A & Orr-Ewing, A J 2022, ' Direct Observation of the Dynamics of Ylide Solvation by Hydrogen-bond Donors using Time-Resolved Infrared Spectroscopy ', Journal of the American Chemical Society, vol. 144, no. 21, pp. 9330-9343 . https://doi.org/10.1021/jacs.2c01208
سنة النشر: 2022
مصطلحات موضوعية: Colloid and Surface Chemistry, Ethanol, Solvents, Hydrogen Bonding, General Chemistry, Lithium, Biochemistry, Catalysis, Hydrogen
الوصف: The photoexcitation of α-diazocarbonyl compounds produces singlet carbene intermediates that react with nucleophilic solvent molecules to form ylides. The zwitterionic nature of these newly formed ylides induces rapid changes in their interactions with the surrounding solvent. Here, ultrafast time-resolved infra-red absorption spectroscopy is used to study the ylide-forming reactions of singlet carbene intermediates from the 270-nm photoexcitation of ethyl diazoacetate in various solvents, and the changes in the subsequent ylide-solvent interactions. The results provide direct spectroscopic observation of the competition between ylide formation and C-H insertion in reactions of the singlet carbene with nucleophilic solvent molecules. We further report the specific solvation dynamics of the tetrahydrofuran (THF) derived ylide (with a characteristic IR absorption band at 1636 cm-1) by various hydrogen-bond donors, and the coordination by lithium cations. Hydrogen-bonded ylide bands shift to lower wavenumber by -19 cm-1 for interactions with ethanol, -14 cm-1 for chloroform, -10 cm-1 for dichloromethane, -9 cm-1 for acetonitrile or cyclohexane, and -16 cm-1 for Li+ coordination, allowing the time-evolution of the ylide-solvent interactions to be tracked. The hydrogen-bonded ylide bands grow with rate coefficients that are close to the diffusional limit. We further characterize the specific interactions of ethanol with the THF derived ylide using quantum chemical (MP2) calculations and DFT-based atom-centred density matrix propagation trajectories which show preferential coordination to the α-carbonyl group. This coordination alters the hybridization character of the ylidic carbon atom, with the greatest change towards sp2 character found for lithium-ion coordination.
وصف الملف: application/pdf
تدمد: 1520-5126
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec5b029b3f12f5e5ac2cf98c51cb5a1b
https://pubmed.ncbi.nlm.nih.gov/35580274
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....ec5b029b3f12f5e5ac2cf98c51cb5a1b
قاعدة البيانات: OpenAIRE