Environmental heterogeneity predicts global species richness patterns better than area

التفاصيل البيبلوغرافية
العنوان: Environmental heterogeneity predicts global species richness patterns better than area
المؤلفون: Ingo Grass, Matthias Fritsch, Florian Hartig, Britta Tietjen, Teja Tscharntke, Collins B. Kukunda, Guy Pe'er, Thomas Kneib, Sebastian Hanß, Holger Kreft, Katrin M. Meyer, Kristy Udy, Hannah Reininghaus, Kerstin Wiegand, Clara-Sophie van Waveren
المصدر: Global Ecology and Biogeography. 30:842-851
بيانات النشر: Wiley, 2021.
سنة النشر: 2021
مصطلحات موضوعية: 0106 biological sciences, Global and Planetary Change, biogeographical region, Ecology, 010604 marine biology & hydrobiology, Biodiversity, area, environmental heterogeneity, 15. Life on land, global species richness, 010603 evolutionary biology, 01 natural sciences, Species-area curve, Geography, species-area relationship, 13. Climate action, Species richness, Ecology, Evolution, Behavior and Systematics, biodiversity
الوصف: Aim It is widely accepted that biodiversity is influenced by both niche‐related and spatial processes from local to global scales. Their relative importance, however, is still disputed, and empirical tests are surprisingly scarce at the global scale. Here, we compare the importance of area (as a proxy for pure spatial processes) and environmental heterogeneity (as a proxy for niche‐related processes) for predicting native mammal species richness world‐wide and within biogeographical regions. Location Global. Time period We analyse a spatial snapshot of richness data collated by the International Union for Conservation of Nature. Major taxa studied All terrestrial mammal species, including possibly extinct species and species with uncertain presence. Methods We applied a spreading dye algorithm to analyse how native mammal species richness changes with area and environmental heterogeneity. As measures for environmental heterogeneity, we used elevation ranges and precipitation ranges, which are well‐known correlates of species richness. Results We found that environmental heterogeneity explained species richness relationships better than did area, suggesting that niche‐related processes are more prevalent than pure area effects at broad scales. Main conclusions Our results imply that niche‐related processes are essential to understand broad‐scale species–area relationships and that habitat diversity is more important than area alone for the protection of global biodiversity.
تدمد: 1466-8238
1466-822X
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f33890bd5ea8ed66dcae02de52858c41
https://doi.org/10.1111/geb.13261
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....f33890bd5ea8ed66dcae02de52858c41
قاعدة البيانات: OpenAIRE