SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation

التفاصيل البيبلوغرافية
العنوان: SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation
المؤلفون: Bidault, G, Virtue, S, Petkevicius, K, Jolin, HE, Dugourd, A, Guenantin, AC, Leggat, J, Mahler-Araujo, B, Lam, BYH, Ma, MK, Dale, M, Carobbio, S, Kaser, A, Fallon, PG, Saez Rodriguez, J, McKenzie, ANJ, Vidal-Puig, A
المساهمون: Bidault, Guillaume [0000-0002-8396-9962], Vidal-Puig, Antonio [0000-0003-4220-9577], Apollo - University of Cambridge Repository
بيانات النشر: Nature Research, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Lipopolysaccharides, Mice, Knockout, Sequence Analysis, RNA, Macrophages, Fatty Acids, Macrophage Activation, Antioxidants, Dexamethasone, Up-Regulation, Mice, RAW 264.7 Cells, Animals, Humans, Interleukin-4, Nippostrongylus, Sterol Regulatory Element Binding Protein 1, Strongylida Infections
الوصف: Macrophages exhibit a spectrum of activation states ranging from classical to alternative activation1. Alternatively, activated macrophages are involved in diverse pathophysiological processes such as confining tissue parasites2, improving insulin sensitivity3 or promoting an immune tolerant microenvironment that facilitates tumour growth and metastasis4. Recently, the role of metabolism regulating macrophage function has come into focus as both the classical and alternative activation programmes require specific regulated metabolic reprogramming5. While most of the studies regarding immunometabolism have focussed on the catabolic pathways activated to provide energy, little is known about the anabolic pathways mediating macrophage alternative activation. In this study, we show that the anabolic transcription factor sterol regulatory element binding protein 1 (SREBP1) is activated in response to the canonical Th2 cytokine interleukin 4 (IL-4) to trigger the de novo lipogenesis (DNL) programme, as a necessary step for macrophage alternative activation. Mechanistically, DNL consumes NADPH, partitioning it away from cellular antioxidant defences and raising ROS levels. ROS serves as a second messenger, signalling sufficient DNL, and promoting macrophage alternative activation. The pathophysiological relevance of this mechanism is validated by showing that SREBP1/DNL is essential for macrophage alternative activation in vivo in a helminth infection model.
وصف الملف: application/pdf
DOI: 10.17863/cam.77051
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fcf6cb373be94b0f2cb363d3493ef6f8
رقم الأكسشن: edsair.doi.dedup.....fcf6cb373be94b0f2cb363d3493ef6f8
قاعدة البيانات: OpenAIRE