Atmospheric deposition of inorganic nutrients to the Western North Pacific Ocean

التفاصيل البيبلوغرافية
العنوان: Atmospheric deposition of inorganic nutrients to the Western North Pacific Ocean
المؤلفون: Min Woo Seok, Ahra Mo, Haryun Kim, Kitae Kim, Tae Hoon Kim, Kitack Lee, Tae Wook Kim, Young Ho Ko, Dongseon Kim, Jin-Young Jung, Ki-Tae Park, Seunghee Park, Jeongwon Kang, Yeo Hun Kim, Geun Ha Park
المصدر: The Science of the total environment. 793
سنة النشر: 2021
مصطلحات موضوعية: Environmental Engineering, Pacific Ocean, 010504 meteorology & atmospheric sciences, Nitrogen, Phosphorus, chemistry.chemical_element, Nutrients, 010501 environmental sciences, Particulates, Atmospheric sciences, 01 natural sciences, Pollution, Carbon, Flux (metallurgy), Nutrient, Deposition (aerosol physics), Total inorganic carbon, chemistry, Environmental Chemistry, Waste Management and Disposal, 0105 earth and related environmental sciences
الوصف: We evaluated the potential impacts of atmospheric deposition on marine productivity and inorganic carbon chemistry in the northwestern Pacific Ocean (8-39°N, 125-157°E). The nutrient concentration in atmospheric total suspended particles decreased exponentially with increasing distance from the closest land-mass (Asia), clearly revealing anthropogenic and terrestrial contributions. The predicted mean depositional fluxes of inorganic nitrogen were approximately 34 and 15 μmol m-2 d-1 to the west and east of 140°E, respectively, which were at least two orders of magnitude greater than the inorganic phosphorus flux. On average, atmospheric particulate deposition would support 3-4% of the net primary production along the surveyed tracks, which is equivalent to ~2% of the dissolved carbon increment caused by the penetration of anthropogenic CO2. Our observations generally fell within the ranges observed over the past 18 years, despite an increasing trend of atmospheric pollution in the source regions during the same period, which implies high temporal and spatial variabilities of atmospheric nutrient concentration in the study area. Continued atmospheric anthropogenic nitrogen deposition may alter the relative abundances of nitrogen and phosphorus.
تدمد: 1879-1026
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd60a0152c3374767f04c89afa58e349
https://pubmed.ncbi.nlm.nih.gov/34166903
حقوق: CLOSED
رقم الأكسشن: edsair.doi.dedup.....fd60a0152c3374767f04c89afa58e349
قاعدة البيانات: OpenAIRE