The new standard Is biodigital: durable and elastic 3D-printed biodigital clay bricks

التفاصيل البيبلوغرافية
العنوان: The new standard Is biodigital: durable and elastic 3D-printed biodigital clay bricks
المؤلفون: Yomna Abdallah, Alberto T. Estevez
المصدر: Biomimetics; Volume 7; Issue 4; Pages: 159
بيانات النشر: MDPI, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Sostenibilitat, Biomedical Engineering, Bioengineering, Ladrillos de arcilla elástica, Mechanical properties, Compressive strength, Deposición controlada de material, Biochemistry, Biomaterials, biodigital, elastic clay bricks, 3D printing, controlled material deposition, mechanical properties, compressive strength, sustainability, Deposició controlada de material, Controlled material deposition, Elastic clay bricks, Propiedades mecánicas, Fuerza compresiva, Propietats mecàniques, Biodigital, Sostenibilidad, Resistència a la compressió, Maons d'argila elàstica, Impresión 3D, Sustainability, Molecular Medicine, Impressió 3D, Biotechnology
الوصف: In a previously published study, the authors explained the formal design efficiency of the 3D-printed biodigital clay bricks 3DPBDCB: a project that aimed to change the conventional methods of clay brick design and mass production. This was achieved by employing the behavioural algorithms of reaction-diffusion and the shortest path that were extracted from the exact material physical properties and hydrophilic behaviours of clay and controlled material deposition 3D printing to create sustainable clay bricks. Sustainability in their use in the built environment and their production processes, with full potential sustainability aspects such as passive cooling, thermal and acoustical insulation, and bio receptivity. The current work studies the mechanical properties of the 3D-printed biodigital clay bricks as elastic and durable clay bricks whose properties depend mainly on their geometrical composition and form. Each of the three families of the 3D-printed biodigital clay bricks (V1, V2, V3) includes the linear model of a double line of 0.5 cm thickness and a bulk model of 55% density were tested for compression and elasticity and compared to models of standard industrial clay bricks. The results revealed that the best elasticity pre-cracking was achieved by the V2 linear model, followed by the V3 linear model, which also achieved the highest post-cracking elasticity—enduring until 150 N pre-cracking and 200 N post-cracking, which makes the V3 linear model eligible for potential application in earthquake-resistant buildings. While the same model V3-linear achieved the second-best compressive strength enduring until 170 N. The best compressive strength was recorded by the V1 linear and bulk model enduring up to 240 N without collapsing, exceeding the strength and resistance of the industrial clay bricks with both models, where the bulk and the perforated collapsed at 200 N and 140 N, respectively. Thus, the mass production and integration of the V1 bulk and linear model and the V3 linear model are recommended for the construction industry and the architectural built environment for their multi-aspect sustainability and enhanced mechanical properties. info:eu-repo/semantics/publishedVersion
وصف الملف: application/pdf
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff63bd21392cef42a1075aaabaed9a0a
http://hdl.handle.net/20.500.12328/3588
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....ff63bd21392cef42a1075aaabaed9a0a
قاعدة البيانات: OpenAIRE