A Multiscale Local–Global Feature Fusion Method for SAR Image Classification with Bayesian Hyperparameter Optimization Algorithm

التفاصيل البيبلوغرافية
العنوان: A Multiscale Local–Global Feature Fusion Method for SAR Image Classification with Bayesian Hyperparameter Optimization Algorithm
المؤلفون: Li, Xiaoqin Lian, Xue Huang, Chao Gao, Guochun Ma, Yelan Wu, Yonggang Gong, Wenyang Guan, Jin
المصدر: Applied Sciences; Volume 13; Issue 11; Pages: 6806
بيانات النشر: Multidisciplinary Digital Publishing Institute, 2023.
سنة النشر: 2023
مصطلحات موضوعية: synthetic aperture radar (SAR), speckle noise, ConvNeXt, Swin Transformer, Bayesian hyperparameter optimization algorithm
الوصف: In recent years, the advancement of deep learning technology has led to excellent performance in synthetic aperture radar (SAR) automatic target recognition (ATR) technology. However, due to the interference of speckle noise, the task of classifying SAR images remains challenging. To address this issue, a multi-scale local–global feature fusion network (MFN) integrating a convolution neural network (CNN) and a transformer network was proposed in this study. The proposed network comprises three branches: a CovNeXt-SimAM branch, a Swin Transformer branch, and a multi-scale feature fusion branch. The CovNeXt-SimAM branch extracts local texture detail features of the SAR images at different scales. By incorporating the SimAM attention mechanism to the CNN block, the feature extraction capability of the model was enhanced from the perspective of spatial and channel attention. Additionally, the Swin Transformer branch was employed to extract SAR image global semantic information at different scales. Finally, the multi-scale feature fusion branch was used to fuse local features and global semantic information. Moreover, to overcome the problem of poor accuracy and inefficiency of the model due to empirically determined model hyperparameters, the Bayesian hyperparameter optimization algorithm was used to determine the optimal model hyperparameters. The model proposed in this study achieved average recognition accuracies of 99.26% and 94.27% for SAR vehicle targets under standard operating conditions (SOCs) and extended operating conditions (EOCs), respectively, on the MSTAR dataset. Compared with the baseline model, the recognition accuracy has been improved by 12.74% and 25.26%, respectively. The results demonstrated that Bayes-MFN reduces the inter-class distance of the SAR images, resulting in more compact classification features and less interference from speckle noise. Compared with other mainstream models, the Bayes-MFN model exhibited the best classification performance.
وصف الملف: application/pdf
اللغة: English
تدمد: 2076-3417
DOI: 10.3390/app13116806
URL الوصول: https://explore.openaire.eu/search/publication?articleId=multidiscipl::16f97060d016d7cd17467ce648b070e9
حقوق: OPEN
رقم الأكسشن: edsair.multidiscipl..16f97060d016d7cd17467ce648b070e9
قاعدة البيانات: OpenAIRE
الوصف
تدمد:20763417
DOI:10.3390/app13116806