Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-waveband Monitoring during Strong Gamma-ray Activity

التفاصيل البيبلوغرافية
العنوان: Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-waveband Monitoring during Strong Gamma-ray Activity
المؤلفون: Marscher, Alan P., Jorstad, Svetlana G., Larionov, Valeri M., Aller, Margo F., Aller, Hugh D., Lähteenmäki, Anne, Agudo, Iván, Smith, Paul S., Gurwell, Mark, Hagen-Thorn, Vladimir A., Konstantinova, Tatiana S., Larionova, Elena G., Larionova, Liudmila V., Melnichuk, Daria A., Blinov, Dmitry A., Kopatskaya, Evgenia N., Troitsky, Ivan S., Tornikoski, Merja, Hovatta, Talvikki, Schmidt, Gary D., D'Arcangelo, Francesca D., Bhattarai, Dipesh, Taylor, Brian, Olmstead, Alice R., Manne-Nicholas, Emily, Roca-Sogorb, Mar, Gómez, José L., McHardy, Ian M., Kurtanidze, Omar, Nikolashvili, Maria G., Kimeridze, Givi N., Sigua, Lorand A.
المصدر: Astrophysical Journal Letters, vol. 710, pp. L126-L131 (2010)
سنة النشر: 2010
المجموعة: Astrophysics
مصطلحات موضوعية: Astrophysics - Cosmology and Extragalactic Astrophysics
الوصف: We present results from monitoring the multi-waveband flux, linear polarization, and parsec-scale structure of the quasar PKS 1510-089, concentrating on eight major gamma-ray flares that occurred during the interval 2009.0-2009.5. The gamma-ray peaks were essentially simultaneous with maxima at optical wavelengths, although the flux ratio of the two wavebands varied by an order of magnitude. The optical polarization vector rotated by 720 degrees during a 5-day period encompassing six of these flares. This culminated in a very bright, roughly 1 day, optical and gamma-ray flare as a bright knot of emission passed through the highest-intensity, stationary feature (the "core") seen in 43 GHz Very Long Baseline Array images. The knot continued to propagate down the jet at an apparent speed of 22c and emit strongly at gamma-ray energies as a months-long X-ray/radio outburst intensified. We interpret these events as the result of the knot following a spiral path through a mainly toroidal magnetic field pattern in the acceleration and collimation zone of the jet, after which it passes through a standing shock in the 43 GHz core and then continues downstream. In this picture, the rapid gamma-ray flares result from scattering of infrared seed photons from a relatively slow sheath of the jet as well as from optical synchrotron radiation in the faster spine. The 2006-2009.7 radio and X-ray flux variations are correlated at very high significance; we conclude that the X-rays are mainly from inverse Compton scattering of infrared seed photons by 20-40 MeV electrons.
Comment: 10 pages of text + 5 figures, to be published in Astrophysical Journal Letters in 2010
نوع الوثيقة: Working Paper
DOI: 10.1088/2041-8205/710/2/L126
URL الوصول: http://arxiv.org/abs/1001.2574
رقم الأكسشن: edsarx.1001.2574
قاعدة البيانات: arXiv
الوصف
DOI:10.1088/2041-8205/710/2/L126