Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory

التفاصيل البيبلوغرافية
العنوان: Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory
المؤلفون: Möstl, C., Isavnin, A., Boakes, P. D., Kilpua, E. K. J., Davies, J. A., Harrison, R. A., Barnes, D., Krupar, V., Eastwood, J. P., Good, S. W., Forsyth, R. J., Bothmer, V., Reiss, M. A., Amerstorfer, T., Winslow, R. M., Anderson, B. J., Philpott, L. C., Rodriguez, L., Rouillard, A. P., Gallagher, P. T., Zhang, T. L.
سنة النشر: 2017
المجموعة: Astrophysics
Physics (Other)
مصطلحات موضوعية: Astrophysics - Solar and Stellar Astrophysics, Physics - Space Physics
الوصف: We present an advance towards accurately predicting the arrivals of coronal mass ejections (CMEs) at the terrestrial planets, including Earth. For the first time, we are able to assess a CME prediction model using data over 2/3 of a solar cycle of observations with the Heliophysics System Observatory. We validate modeling results of 1337 CMEs observed with the Solar Terrestrial Relations Observatory (STEREO) heliospheric imagers (HI) (science data) from 8 years of observations by 5 in situ observing spacecraft. We use the self-similar expansion model for CME fronts assuming 60 degree longitudinal width, constant speed and constant propagation direction. With these assumptions we find that 23%-35% of all CMEs that were predicted to hit a certain spacecraft lead to clear in situ signatures, so that for 1 correct prediction, 2 to 3 false alarms would have been issued. In addition, we find that the prediction accuracy does not degrade with the HI longitudinal separation from Earth. Predicted arrival times are on average within 2.6 +/- 16.6 hours difference of the in situ arrival time, similar to analytical and numerical modeling, and a true skill statistic of 0.21. We also discuss various factors that may improve the accuracy of space weather forecasting using wide-angle heliospheric imager observations. These results form a first order approximated baseline of the prediction accuracy that is possible with HI and other methods used for data by an operational space weather mission at the Sun-Earth L5 point.
Comment: 27 pages, 7 figures, 3 tables, accepted for publication in the AGU journal "Space Weather" on 2017 July 1
نوع الوثيقة: Working Paper
DOI: 10.1002/2017SW001614
URL الوصول: http://arxiv.org/abs/1703.00705
رقم الأكسشن: edsarx.1703.00705
قاعدة البيانات: arXiv