Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices

التفاصيل البيبلوغرافية
العنوان: Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices
المؤلفون: Bussmann, E., Gamble, John King, Koepke, J. C., Laroche, D., Huang, S. H., Chuang, Y., Li, J. -Y., Liu, C. W., Swartzentruber, B. S., Lilly, M. P., Carroll, M. S., Lu, T. -M.
المصدر: Phys. Rev. Materials 2, 066004 (2018)
سنة النشر: 2017
المجموعة: Condensed Matter
مصطلحات موضوعية: Condensed Matter - Materials Science
الوصف: As a first step to porting scanning tunneling microscopy methods of atomic-precision fabrication to a strained-Si/SiGe platform, we demonstrate post-growth P atomic-layer doping of SiGe heterostructures. To preserve the substrate structure and elastic state, we use a T $\leq 800^\circ$C process to prepare clean Si$_{0.86}$Ge$_{0.14}$ surfaces suitable for atomic-precision fabrication. P-saturated atomic-layer doping is incorporated and capped with epitaxial Si under a thermal budget compatible with atomic-precision fabrication. Hall measurements at T$=0.3$ K show that the doped heterostructure has R$_{\square}=570\pm30$ $\Omega$, yielding an electron density $n_{e}=2.1\pm0.1\times10^{14}$cm$^{-2}$ and mobility $\mu_e=52\pm3$ cm$^{2}$ V$^{-1}$ s$^{-1}$, similar to saturated atomic-layer doping in pure Si and Ge. The magnitude of $\mu_e$ and the complete absence of Shubnikov-de Haas oscillations in magnetotransport measurements indicate that electrons are overwhelmingly localized in the donor layer, and not within a nearby buried Si well. This conclusion is supported by self-consistent Schr\"odinger-Poisson calculations that predict electron occupation primarily in the donor layer.
Comment: 7 pages, 6 figures, to be submitted to Physical Review Materials. This work has been supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science
نوع الوثيقة: Working Paper
DOI: 10.1103/PhysRevMaterials.2.066004
URL الوصول: http://arxiv.org/abs/1710.06449
رقم الأكسشن: edsarx.1710.06449
قاعدة البيانات: arXiv
الوصف
DOI:10.1103/PhysRevMaterials.2.066004