Confirming chemical clocks: asteroseismic age dissection of the Milky Way disk(s)

التفاصيل البيبلوغرافية
العنوان: Confirming chemical clocks: asteroseismic age dissection of the Milky Way disk(s)
المؤلفون: Aguirre, V. Silva, Bojsen-Hansen, M., Slumstrup, D., Casagrande, L., Kawata, D., Ciuca, I., Handberg, R., Lund, M. N., Mosumgaard, J. R., Huber, D., Johnson, J. A., Pinsonneault, M. H., Serenelli, A. M., Stello, D., Tayar, J., Bird, J. C., Cassisi, S., Hon, M., Martig, M., Nissen, P. E., Rix, H. W., Schönrich, R., Sahlholdt, C., Trick, W. H., Yu, J.
سنة النشر: 2017
المجموعة: Astrophysics
مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies, Astrophysics - Solar and Stellar Astrophysics
الوصف: Investigations of the origin and evolution of the Milky Way disk have long relied on chemical and kinematic identification of its components to reconstruct our Galactic past. Difficulties in determining precise stellar ages have restricted most studies to small samples, normally confined to the solar neighbourhood. Here we break this impasse with the help of asteroseismic inference and perform a chronology of the evolution of the disk throughout the age of the Galaxy. We chemically dissect the Milky Way disk population using a sample of red giant stars spanning out to 2~kpc in the solar annulus observed by the {\it Kepler} satellite, with the added dimension of asteroseismic ages. Our results reveal a clear difference in age between the low- and high-$\alpha$ populations, which also show distinct velocity dispersions in the $V$ and $W$ components. We find no tight correlation between age and metallicity nor [$\alpha$/Fe] for the high-$\alpha$ disk stars. Our results indicate that this component formed over a period of more than 2~Gyr with a wide range of [M/H] and [$\alpha$/Fe] independent of time. Our findings show that the kinematic properties of young $\alpha$-rich stars are consistent with the rest of the high-$\alpha$ population and different from the low-$\alpha$ stars of similar age, rendering support to their origin being old stars that went through a mass transfer or stellar merger event, making them appear younger, instead of migration of truly young stars formed close to the Galactic bar.
Comment: 15 pages, 16 figures, MNRAS accepted
نوع الوثيقة: Working Paper
DOI: 10.1093/mnras/sty150
URL الوصول: http://arxiv.org/abs/1710.09847
رقم الأكسشن: edsarx.1710.09847
قاعدة البيانات: arXiv