Strain-Engineering Mott-Insulating La$_2$CuO$_4$

التفاصيل البيبلوغرافية
العنوان: Strain-Engineering Mott-Insulating La$_2$CuO$_4$
المؤلفون: Ivashko, O., Horio, M., Wan, W., Christensen, N. B., McNally, D. E., Paris, E., Tseng, Y., Shaik, N. E., Rønnow, H. M., Wei, H. I., Adamo, C., Lichtensteiger, C., Gibert, M., Beasley, M. R., Shen, K. M., Tomczak, J. M., Schmitt, T., Chang, J.
المصدر: Nature Communications 10, 786 (2019)
سنة النشر: 2018
المجموعة: Condensed Matter
مصطلحات موضوعية: Condensed Matter - Strongly Correlated Electrons, Condensed Matter - Superconductivity
الوصف: The transition temperature $T_\textrm{c}$ of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La$_{2-\mathrm{x}}$Sr$_\mathrm{x}$CuO$_4$ thin films, such substrates are sub-optimal and the highest $T_\textrm{c}$ is instead obtained using LaSrAlO$_4$. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in $T_\mathrm{c}$ and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La$_2$CuO$_4$ thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest $T_\textrm{c}$ under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.
Comment: 15 pages, 7 figures and 2 tables (including Supplementary Information)
نوع الوثيقة: Working Paper
DOI: 10.1038/s41467-019-08664-6
URL الوصول: http://arxiv.org/abs/1805.07173
رقم الأكسشن: edsarx.1805.07173
قاعدة البيانات: arXiv
الوصف
DOI:10.1038/s41467-019-08664-6