On the influence of Al-concentration on the fracture toughness of NiAl: microcantilever fracture tests and atomistic simulations

التفاصيل البيبلوغرافية
العنوان: On the influence of Al-concentration on the fracture toughness of NiAl: microcantilever fracture tests and atomistic simulations
المؤلفون: Webler, Ralf, Baranova, Polina N., Karewar, Shivraj, Neumeier, Steffen, Möller, Johannes J., Springer, Hauke, Göken, Mathias, Bitzek, Erik
سنة النشر: 2019
المجموعة: Condensed Matter
مصطلحات موضوعية: Condensed Matter - Materials Science
الوصف: The mechanical properties of the stoichiometric B2 $\beta$-phase of NiAl are well established, however the effect of off-stoichiometric composition on the fracture toughness has not yet been systematically studied over the entire composition range of 40-50% Al. Here we use microbending tests on notched cantilever beams FIB-milled from NiAl single crystals with an aluminized as well as an oxidation-induced composition gradient to determine the influence of the Al concentration on the mechanical properties. The fracture toughness is maximal for the stoichiometric composition. It decreases with increasing Ni-content in the Ni-rich composition range, where plastic deformation is observed to accompany the fracture process. In contrast, no plasticity is observed in Al-rich NiAl, which shows a nearly concentration-independent, low fracture toughness. The theoretical fracture toughness according to Griffith, however, shows only a very weak composition dependence in both, the Ni- and Al-rich composition range. The differences in fracture toughness could furthermore not be explained solely based on the different hardening contributions of Ni-antisites in the Ni-rich and structural vacancies in the Al-rich crystals. Atomistic fracture simulations show that crack propagation in NiAl takes place by the nucleation and migration of kinks on the crack front. The low fracture toughness of Al-rich NiAl can thus be understood by the dual effect of structural vacancies as strong obstacles to dislocation motion and as source of crack front kinks.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1912.12608
رقم الأكسشن: edsarx.1912.12608
قاعدة البيانات: arXiv