Validation of SOLPS-ITER Simulations against the TCV-X21 Reference Case

التفاصيل البيبلوغرافية
العنوان: Validation of SOLPS-ITER Simulations against the TCV-X21 Reference Case
المؤلفون: Wang, Y., Colandrea, C., Oliveira, D. S., Theiler, C., Reimerdes, H., Body, T., Galassi, D., Martinelli, L., Lee, K., team, TCV
سنة النشر: 2023
المجموعة: Physics (Other)
مصطلحات موضوعية: Physics - Plasma Physics
الوصف: This paper presents a quantitative validation of SOLPS-ITER simulations against the TCV-X21 reference case and provides insights into the neutral dynamics and ionization source distribution in this scenario. TCV-X21 is a well-diagnosed diverted L-mode sheath-limited plasma scenario in both toroidal field directions, designed specifically for the validation of turbulence codes [D.S. Oliveira, T. Body, et al 2022 Nucl. Fusion 62 096001]. Despite the optimization to reduce the impact of the neutral dynamics, the absence of neutrals in previous turbulence simulations of TCV-X21 was identified as a possible explanation for the disagreements with the experimental data in the divertor region. This motivates the present study with SOLPS-ITER that includes kinetic neutral dynamics via EIRENE. Five new observables are added to the extensive, publicly available TCV-X21 dataset. These are three deuterium Balmer lines in the divertor and neutral pressure in the common and private flux regions. The quantitative agreement metric is combined with the conjugate gradient method to approach the SOLPS-ITER input parameters that return the best overall agreement with the experiment. A proof-of-principle of this method results in a modest improvement in the level-of-agreement; shortcomings of the method and how to improve it are discussed. Alternatively, a scan of the particle and heat diffusion coefficients shows an improvement of 10.4% beyond the agreement level achieved by the gradient method. The result is found for an increased transport coefficient compared to what is usually used for TCV L-mode plasmas, suggesting the need for accurate self-consistent turbulence models for predictive boundary simulations. The simulations indicate that ~65% of the total ionization occurs in the SOL, motivating the inclusion of neutrals in future turbulence simulations towards improved agreement with the experiment.
نوع الوثيقة: Working Paper
DOI: 10.1088/1741-4326/ad3562
URL الوصول: http://arxiv.org/abs/2310.17390
رقم الأكسشن: edsarx.2310.17390
قاعدة البيانات: arXiv
الوصف
DOI:10.1088/1741-4326/ad3562