Enhancing High-Energy Particle Physics Collision Analysis through Graph Data Attribution Techniques

التفاصيل البيبلوغرافية
العنوان: Enhancing High-Energy Particle Physics Collision Analysis through Graph Data Attribution Techniques
المؤلفون: Verdone, A., Devoto, A., Sebastiani, C., Carmignani, J., D'Onofrio, M., Giagu, S., Scardapane, S., Panella, M.
سنة النشر: 2024
المجموعة: Computer Science
High Energy Physics - Experiment
مصطلحات موضوعية: Computer Science - Machine Learning, High Energy Physics - Experiment
الوصف: The experiments at the Large Hadron Collider at CERN generate vast amounts of complex data from high-energy particle collisions. This data presents significant challenges due to its volume and complex reconstruction, necessitating the use of advanced analysis techniques for analysis. Recent advancements in deep learning, particularly Graph Neural Networks, have shown promising results in addressing the challenges but remain computationally expensive. The study presented in this paper uses a simulated particle collision dataset to integrate influence analysis inside the graph classification pipeline aiming at improving the accuracy and efficiency of collision event prediction tasks. By using a Graph Neural Network for initial training, we applied a gradient-based data influence method to identify influential training samples and then we refined the dataset by removing non-contributory elements: the model trained on this new reduced dataset can achieve good performances at a reduced computational cost. The method is completely agnostic to the specific influence method: different influence modalities can be easily integrated into our methodology. Moreover, by analyzing the discarded elements we can provide further insights about the event classification task. The novelty of integrating data attribution techniques together with Graph Neural Networks in high-energy physics tasks can offer a robust solution for managing large-scale data problems, capturing critical patterns, and maximizing accuracy across several high-data demand domains.
Comment: 10 pages, 6 figures, 2 tables
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2407.14859
رقم الأكسشن: edsarx.2407.14859
قاعدة البيانات: arXiv