دورية أكاديمية

Probiotics mitigate thermal stress- and pathogen-driven impacts on coral skeleton

التفاصيل البيبلوغرافية
العنوان: Probiotics mitigate thermal stress- and pathogen-driven impacts on coral skeleton
المؤلفون: Mahdi Moradi, Phillipe R. Magalhaes, Raquel S. Peixoto, Cassia C.A.C. Jonck, Daniel François, Anna Clara F. Bellot, Jonatã B. Teixeira, Carla S. Silveira, Gustavo Duarte, Heitor Evangelista, Catia F. Barbosa
المصدر: Frontiers in Marine Science, Vol 10 (2023)
بيانات النشر: Frontiers Media S.A., 2023.
سنة النشر: 2023
المجموعة: LCC:Science
LCC:General. Including nature conservation, geographical distribution
مصطلحات موضوعية: Pocillopora damicornis, micro-morphologies, porosity, coral calcification, probiotics, disease, Science, General. Including nature conservation, geographical distribution, QH1-199.5
الوصف: Threats leading to a reduction in coral populations are apparent worldwide. Several different approaches have been tested to accelerate the adaptation of corals to a changing climate. Here, we evaluated the skeleton structure, crystal habit, and chemical changes of the coral Pocillopora damicornis in response to the pathogen (Vibrio coralliilyticus) and probiotic (Beneficial Microorganisms for Corals, BMCs) inoculation under ambient conditions (26 °C) and thermal stress (30 °C) during a 50-day mesocosm experiment. The skeletons were analyzed using microtomography, energy-dispersive x-ray spectroscopy (EDX/SEM), and densitometry to investigate the skeleto-physico-chemical micro-morphological changes in porosity, median pore-size diameter, crystal habit, Mg/Ca, Sr/Ca, the skeleton mineral density (g/cm2) and skeleton mineral content (g–2). The results indicate considerable changes in the coral skeleton caused by both temperature and microbial inoculation. Most importantly, lower density (to ∼ x̄ 0.5 g/cm2) and higher porosity (up to ∼ x̄ 47%) were correlated with inoculation of V. coralliilyticus and mitigated by probiotics. BMCs also substantially increased calcification, as evidenced by Mg/Ca in the skeleton of thermally stressed corals. At the micron scale, aragonite crystal fibbers precipitated during the experiments showed an acicular habit in thermally stressed and pathogen-inoculated corals kept at 30 °C. In contrast, a spherulitic habit, characteristic of high growth rates, was observed in corals inoculated with both BMCs and V. coralliilyticus. Our findings reveal that pathogen inoculation and thermal stress had notable impacts on coral skeleton properties, including porosity, density, and crystal morphology, in a short period of time, which highlights the potential impacts of shifts in climate warming and environmental quality. Interestingly, BMCs played a role in maintaining the properties of skeleton calcification.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2296-7745
Relation: https://www.frontiersin.org/articles/10.3389/fmars.2023.1212690/full; https://doaj.org/toc/2296-7745
DOI: 10.3389/fmars.2023.1212690
URL الوصول: https://doaj.org/article/c0114403acbc4898a6fe186f46ce58b4
رقم الأكسشن: edsdoj.0114403acbc4898a6fe186f46ce58b4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22967745
DOI:10.3389/fmars.2023.1212690