دورية أكاديمية

An Overview of the Atmospheric Component of the Energy Exascale Earth System Model

التفاصيل البيبلوغرافية
العنوان: An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
المؤلفون: P. J. Rasch, S. Xie, P.‐L. Ma, W. Lin, H. Wang, Q. Tang, S. M. Burrows, P. Caldwell, K. Zhang, R. C. Easter, P. Cameron‐Smith, B. Singh, H. Wan, J.‐C. Golaz, B. E. Harrop, E. Roesler, J. Bacmeister, V. E. Larson, K. J. Evans, Y. Qian, M. Taylor, L. R. Leung, Y. Zhang, L. Brent, M. Branstetter, C. Hannay, S. Mahajan, A. Mametjanov, R. Neale, J. H. Richter, J.‐H. Yoon, C. S. Zender, D. Bader, M. Flanner, J. G. Foucar, R. Jacob, N. Keen, S. A. Klein, X. Liu, A.G. Salinger, M. Shrivastava, Y. Yang
المصدر: Journal of Advances in Modeling Earth Systems, Vol 11, Iss 8, Pp 2377-2411 (2019)
بيانات النشر: American Geophysical Union (AGU), 2019.
سنة النشر: 2019
المجموعة: LCC:Physical geography
LCC:Oceanography
مصطلحات موضوعية: climate, climate modeling, Earth system, general circulation modeling, atmospheric model, climate change, Physical geography, GB3-5030, Oceanography, GC1-1581
الوصف: Abstract The Energy Exascale Earth System Model Atmosphere Model version 1, the atmospheric component of the Department of Energy's Energy Exascale Earth System Model is described. The model began as a fork of the well‐known Community Atmosphere Model, but it has evolved in new ways, and coding, performance, resolution, physical processes (primarily cloud and aerosols formulations), testing and development procedures now differ significantly. Vertical resolution was increased (from 30 to 72 layers), and the model top extended to 60 km (~0.1 hPa). A simple ozone photochemistry predicts stratospheric ozone, and the model now supports increased and more realistic variability in the upper troposphere and stratosphere. An optional improved treatment of light‐absorbing particle deposition to snowpack and ice is available, and stronger connections with Earth system biogeochemistry can be used for some science problems. Satellite and ground‐based cloud and aerosol simulators were implemented to facilitate evaluation of clouds, aerosols, and aerosol‐cloud interactions. Higher horizontal and vertical resolution, increased complexity, and more predicted and transported variables have increased the model computational cost and changed the simulations considerably. These changes required development of alternate strategies for tuning and evaluation as it was not feasible to “brute force” tune the high‐resolution configurations, so short‐term hindcasts, perturbed parameter ensemble simulations, and regionally refined simulations provided guidance on tuning and parameterization sensitivity to higher resolution. A brief overview of the model and model climate is provided. Model fidelity has generally improved compared to its predecessors and the CMIP5 generation of climate models.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1942-2466
Relation: https://doaj.org/toc/1942-2466
DOI: 10.1029/2019MS001629
URL الوصول: https://doaj.org/article/01bcd0c368534826ba274d1603730739
رقم الأكسشن: edsdoj.01bcd0c368534826ba274d1603730739
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19422466
DOI:10.1029/2019MS001629