دورية أكاديمية

High Isolation, Double-Clamped, Magnetoelectric Microelectromechanical Resonator Magnetometer

التفاصيل البيبلوغرافية
العنوان: High Isolation, Double-Clamped, Magnetoelectric Microelectromechanical Resonator Magnetometer
المؤلفون: Thomas Mion, Michael J. D’Agati, Sydney Sofronici, Konrad Bussmann, Margo Staruch, Jason L. Kost, Kevin Co, Roy H. Olsson, Peter Finkel
المصدر: Sensors, Vol 23, Iss 20, p 8626 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Chemical technology
مصطلحات موضوعية: magnetoelectric, magnetometer, mems, iron cobalt hafnium, aluminum nitride, magnetostriction, Chemical technology, TP1-1185
الوصف: Magnetoelectric (ME)-based magnetometers have garnered much attention as they boast ultra-low-power systems with a small form factor and limit of detection in the tens of picotesla. The highly sensitive and low-power electric readout from the ME sensor makes them attractive for near DC and low-frequency AC magnetic fields as platforms for continuous magnetic signature monitoring. Among multiple configurations of the current ME magnetic sensors, most rely on exploiting the mechanically resonant characteristics of a released ME microelectromechanical system (MEMS) in a heterostructure device. Through optimizing the resonant device configuration, we design and fabricate a fixed–fixed resonant beam structure with high isolation compared to previous designs operating at ~800 nW of power comprised of piezoelectric aluminum nitride (AlN) and magnetostrictive (Co1-xFex)-based thin films that are less susceptible to vibration while providing similar characteristics to ME-MEMS cantilever devices. In this new design of double-clamped magnetoelectric MEMS resonators, we have also utilized thin films of a new iron–cobalt–hafnium alloy (Fe0.5Co0.5)0.92Hf0.08 that provides a low-stress, high magnetostrictive material with an amorphous crystalline structure and ultra-low magnetocrystalline anisotropy. Together, the improvements of this sensor design yield a magnetic field sensitivity of 125 Hz/mT when released in a compressive state. The overall detection limit of these sensors using an electric field drive and readout are presented, and noise sources are discussed. Based on these results, design parameters for future ME MEMS field sensors are discussed.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1424-8220
Relation: https://www.mdpi.com/1424-8220/23/20/8626; https://doaj.org/toc/1424-8220
DOI: 10.3390/s23208626
URL الوصول: https://doaj.org/article/0284ccc1520c4a5a92d5101b21ac46d4
رقم الأكسشن: edsdoj.0284ccc1520c4a5a92d5101b21ac46d4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14248220
DOI:10.3390/s23208626