دورية أكاديمية

Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet- wheat

التفاصيل البيبلوغرافية
العنوان: Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet- wheat
المؤلفون: Taramani Yadav, Ashwani Kumar, R.K. Yadav, Gajender Yadav, Rakesh Kumar, Manish Kushwaha
المصدر: Saudi Journal of Biological Sciences, Vol 27, Iss 8, Pp 2010-2017 (2020)
بيانات النشر: Elsevier, 2020.
سنة النشر: 2020
المجموعة: LCC:Biology (General)
مصطلحات موضوعية: Matric stress, Na+/K+, Osmotic stress, PBRs, Proline, RWC, Biology (General), QH301-705.5
الوصف: Plant growth is often affected with hampered physiological and cellular functioning due to salinity and drought stress. To assess the effectiveness of plant bioregulators (PBRs) in mitigating abiotic stresses, a double spilt plot field study was conducted with three replications at ICAR-CSSRI, research farm, Nain, Panipat. The study comprised of three deficit irrigation regimes viz., 100, 80 and 60% of crop evapo-transpiration (ETc) (I1, I2 and I3), four levels of irrigation water salinity i.e. 2, 4, 8, 12 dS m−1 (S0, S1, S2 and S3) and two PBRs salicylic acid (SA; G1) and thiourea (TU; G2). Irrigations, as per regimes and salinity, were applied at identified critical stages of wheat and if needed in pearl millet. PBRs were applied as seed priming and foliar sprays at two sensitive stages of respective crops. The trend of plant height, and physiological and biochemical traits was similar under different treatments at both stages, but differed significantly only at reproductive stage. Water deficit caused significant reduction in pearl millet (5.1%) and wheat (6.7%) grain yields. The reduction in grain yield under 8 and 12 dS m−1 was 12.90 and 22.43% in pearl millet and 7.68 and 32.93% in wheat, respectively compared to 2 dS m−1. Application of either SA (G1) or TU (G2) significantly enhanced plant height and grain yield, but magnitude of the increment was higher with SA in pearl millet and with TU in wheat. Application of SA and TU increased grain yield by 14.42 and 12.98 in pearl millet, and 12.90 and 17.36% in wheat, respectively. The plant height, RWC, TC, MI, LP, proline, Fv/Fm and Na/K ratio significantly reduced by salinity stress in pearl millet and both water and salinity stress in wheat. Application of both PBRs proved beneficial to mitigate adverse effect of water deficit and salt stress by significantly improving physiological traits, biochemical traits and ultimately grain yield in both crops.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1319-562X
Relation: http://www.sciencedirect.com/science/article/pii/S1319562X20302710; https://doaj.org/toc/1319-562X
DOI: 10.1016/j.sjbs.2020.06.030
URL الوصول: https://doaj.org/article/0b465cb8cff24489be071f3ebe7393d7
رقم الأكسشن: edsdoj.0b465cb8cff24489be071f3ebe7393d7
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:1319562X
DOI:10.1016/j.sjbs.2020.06.030