دورية أكاديمية

Brain strain rate response: Addressing computational ambiguity and experimental data for model validation

التفاصيل البيبلوغرافية
العنوان: Brain strain rate response: Addressing computational ambiguity and experimental data for model validation
المؤلفون: Zhou Zhou, Xiaogai Li, Yuzhe Liu, Warren N. Hardy, Svein Kleiven
المصدر: Brain Multiphysics, Vol 4, Iss , Pp 100073- (2023)
بيانات النشر: Elsevier, 2023.
سنة النشر: 2023
المجموعة: LCC:Neurosciences. Biological psychiatry. Neuropsychiatry
مصطلحات موضوعية: Traumatic brain injury, Time derivative of strain, Rate of deformation tensor, Strain rate validation, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
الوصف: Traumatic brain injury (TBI) is an alarming global public health issue with high morbidity and mortality rates. Although the causal link between external insults and consequent brain injury remains largely elusive, both strain and strain rate are generally recognized as crucial factors for TBI onsets. With respect to the flourishment of strain-based investigation, ambiguity and inconsistency are noted in the scheme for strain rate calculation within the TBI research community. Furthermore, there is no experimental data that can be used to validate the strain rate responses of finite element (FE) models of the human brain. The current work presented a theoretical clarification of two commonly used strain rate computational schemes: the strain rate was either calculated as the time derivative of strain or derived from the rate of deformation tensor. To further substantiate the theoretical disparity, these two schemes were respectively implemented to estimate the strain rate responses from a previous-published cadaveric experiment and an FE head model secondary to a concussive impact. The results clearly showed scheme-dependent responses, both in the experimentally determined principal strain rate and model-derived principal and tract-oriented strain rates. The results highlight that cross-scheme comparison of strain rate responses is inappropriate, and the utilized strain rate computational scheme needs to be reported in future studies. The newly calculated experimental strain rate curves in the supplementary material can be used for strain rate validation of FE head models.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2666-5220
Relation: http://www.sciencedirect.com/science/article/pii/S2666522023000114; https://doaj.org/toc/2666-5220
DOI: 10.1016/j.brain.2023.100073
URL الوصول: https://doaj.org/article/d0e938baea2c47b8815524f69f9f4962
رقم الأكسشن: edsdoj.0e938baea2c47b8815524f69f9f4962
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26665220
DOI:10.1016/j.brain.2023.100073